Show commands for:
SageMath
sage: E = EllipticCurve("bb1")
sage: E.isogeny_class()
Elliptic curves in class 10320.bb
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
10320.bb1 | 10320bd2 | [0, 1, 0, -2652416, 1661800884] | [2] | 241920 | |
10320.bb2 | 10320bd1 | [0, 1, 0, -164096, 26476980] | [2] | 120960 | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 10320.bb have rank \(0\).
Complex multiplication
The elliptic curves in class 10320.bb do not have complex multiplication.Modular form 10320.2.a.bb
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.