Properties

Label 10304.p
Number of curves $1$
Conductor $10304$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("p1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 10304.p

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
10304.p1 10304c1 \([0, -1, 0, 23, -367]\) \(1257728/55223\) \(-56548352\) \([]\) \(1536\) \(0.16735\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 10304.p1 has rank \(0\).

Complex multiplication

The elliptic curves in class 10304.p do not have complex multiplication.

Modular form 10304.2.a.p

sage: E.q_eigenform(10)
 
\(q - q^{3} + 2q^{5} - q^{7} - 2q^{9} + 2q^{11} + q^{13} - 2q^{15} + 6q^{19} + O(q^{20})\)  Toggle raw display