Label 10304.n
Number of curves $1$
Conductor $10304$
CM no
Rank $1$

Related objects


Learn more

Show commands: SageMath
sage: E = EllipticCurve("n1")
sage: E.isogeny_class()

Elliptic curves in class 10304.n

sage: E.isogeny_class().curves
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
10304.n1 10304x1 \([0, -1, 0, 7, 49]\) \(32000/1127\) \(-1154048\) \([]\) \(768\) \(-0.15684\) \(\Gamma_0(N)\)-optimal


sage: E.rank()

The elliptic curve 10304.n1 has rank \(1\).

Complex multiplication

The elliptic curves in class 10304.n do not have complex multiplication.

Modular form 10304.2.a.n

sage: E.q_eigenform(10)
\(q - q^{3} - q^{7} - 2q^{9} - 2q^{11} + 3q^{13} + O(q^{20})\)  Toggle raw display