Properties

 Label 10304.be1 Conductor $10304$ Discriminant $73859072$ j-invariant $$\frac{12576878500}{1127}$$ CM no Rank $1$ Torsion structure $$\Z/{2}\Z$$

Related objects

Show commands: Magma / Pari/GP / SageMath

Minimal Weierstrass equation

sage: E = EllipticCurve([0, -1, 0, -1953, -32575])

gp: E = ellinit([0, -1, 0, -1953, -32575])

magma: E := EllipticCurve([0, -1, 0, -1953, -32575]);

$$y^2=x^3-x^2-1953x-32575$$

Mordell-Weil group structure

$\Z\times \Z/{2}\Z$

Infinite order Mordell-Weil generator and height

sage: E.gens()

magma: Generators(E);

 $P$ = $$\left(\frac{14359}{81}, \frac{1656064}{729}\right)$$ $\hat{h}(P)$ ≈ $9.0118185259456301481132969438$

Torsion generators

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

$$\left(-25, 0\right)$$

Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(-25, 0\right)$$

Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$10304$$ = $2^{6} \cdot 7 \cdot 23$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $73859072$ = $2^{16} \cdot 7^{2} \cdot 23$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$\frac{12576878500}{1127}$$ = $2^{2} \cdot 5^{3} \cdot 7^{-2} \cdot 23^{-1} \cdot 293^{3}$ Endomorphism ring: $\Z$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $0.54981828339398227527099525321\dots$ Stable Faltings height: $-0.37437795735261147061864757540\dots$

BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $1$ sage: E.regulator()  magma: Regulator(E); Regulator: $9.0118185259456301481132969438\dots$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $0.71813782078822854461908211756\dots$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $4$  = $2\cdot2\cdot1$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $2$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $1$ (exact) sage: r = E.rank(); sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()  gp: ar = ellanalyticrank(E); gp: ar[2]/factorial(ar[1])  magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12); Special value: $L'(E,1)$ ≈ $6.4717277175615808741697661511008398564$

Modular invariants

Modular form 10304.2.a.be

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q + 2 q^{3} + q^{7} + q^{9} + 4 q^{11} - 6 q^{13} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 5120 $\Gamma_0(N)$-optimal: no Manin constant: 1

Local data

This elliptic curve is not semistable. There are 3 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $2$ $I_{6}^{*}$ Additive -1 6 16 0
$7$ $2$ $I_{2}$ Split multiplicative -1 1 2 2
$23$ $1$ $I_{1}$ Non-split multiplicative 1 1 1 1

Galois representations

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$2$ 2B 2.3.0.1

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.

Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 add ordinary ss split ordinary ordinary ss ss nonsplit ordinary ordinary ordinary ordinary ordinary ordinary - 1 1,3 2 3 1 1,3 1,1 3 1 1 1 1 1 1 - 0 0,0 0 0 0 0,0 0,0 0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

Isogenies

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 2.
Its isogeny class 10304.be consists of 2 curves linked by isogenies of degree 2.

Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $2$ $$\Q(\sqrt{23})$$ $$\Z/2\Z \times \Z/2\Z$$ Not in database $4$ 4.0.72128.1 $$\Z/4\Z$$ Not in database $8$ 8.4.475382321053696.13 $$\Z/2\Z \times \Z/4\Z$$ Not in database $8$ 8.0.44033523122176.2 $$\Z/2\Z \times \Z/4\Z$$ Not in database $8$ Deg 8 $$\Z/6\Z$$ Not in database $16$ Deg 16 $$\Z/8\Z$$ Not in database $16$ Deg 16 $$\Z/2\Z \times \Z/6\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.