# Properties

 Label 102550.n1 Conductor 102550 Discriminant -2100224000000 j-invariant $$-\frac{23912763841}{134414336}$$ CM no Rank 2 Torsion Structure $$\mathrm{Trivial}$$

# Related objects

Show commands for: Magma / SageMath / Pari/GP

## Minimal Weierstrass equation

magma: E := EllipticCurve([1, 0, 1, -1501, -73352]); // or

magma: E := EllipticCurve("102550i1");

sage: E = EllipticCurve([1, 0, 1, -1501, -73352]) # or

sage: E = EllipticCurve("102550i1")

gp: E = ellinit([1, 0, 1, -1501, -73352]) \\ or

gp: E = ellinit("102550i1")

$$y^2 + x y + y = x^{3} - 1501 x - 73352$$

## Mordell-Weil group structure

$$\Z^2$$

### Infinite order Mordell-Weil generators and heights

magma: Generators(E);

sage: E.gens()

 $$P$$ = $$\left(131, 1342\right)$$ $$\left(\frac{587}{4}, \frac{12967}{8}\right)$$ $$\hat{h}(P)$$ ≈ 2.30792001047 6.55969334292

## Integral points

magma: IntegralPoints(E);

sage: E.integral_points()

$$\left(131, 1342\right)$$, $$\left(131, -1474\right)$$, $$\left(38531, 7544126\right)$$, $$\left(38531, -7582658\right)$$

## Invariants

 magma: Conductor(E);  sage: E.conductor().factor()  gp: ellglobalred(E)[1] Conductor: $$102550$$ = $$2 \cdot 5^{2} \cdot 7 \cdot 293$$ magma: Discriminant(E);  sage: E.discriminant().factor()  gp: E.disc Discriminant: $$-2100224000000$$ = $$-1 \cdot 2^{16} \cdot 5^{6} \cdot 7 \cdot 293$$ magma: jInvariant(E);  sage: E.j_invariant().factor()  gp: E.j j-invariant: $$-\frac{23912763841}{134414336}$$ = $$-1 \cdot 2^{-16} \cdot 7^{-1} \cdot 43^{3} \cdot 67^{3} \cdot 293^{-1}$$ Endomorphism ring: $$\Z$$ (no Complex Multiplication) Sato-Tate Group: $\mathrm{SU}(2)$

## BSD invariants

 magma: Rank(E);  sage: E.rank() Rank: $$2$$ magma: Regulator(E);  sage: E.regulator() Regulator: $$14.8475202689$$ magma: RealPeriod(E);  sage: E.period_lattice().omega()  gp: E.omega[1] Real period: $$0.344237657855$$ magma: TamagawaNumbers(E);  sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]] Tamagawa product: $$2$$  = $$2\cdot1\cdot1\cdot1$$ magma: Order(TorsionSubgroup(E));  sage: E.torsion_order()  gp: elltors(E)[1] Torsion order: $$1$$ magma: MordellWeilShaInformation(E);  sage: E.sha().an_numerical() Analytic order of Ш: $$1$$ (rounded)

## Modular invariants

#### Modular form 102550.2.a.n

magma: ModularForm(E);

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

$$q - q^{2} + q^{3} + q^{4} - q^{6} + q^{7} - q^{8} - 2q^{9} + q^{12} + q^{13} - q^{14} + q^{16} - 6q^{17} + 2q^{18} - 4q^{19} + O(q^{20})$$

For more coefficients, see the Downloads section to the right.

 magma: ModularDegree(E);  sage: E.modular_degree() Modular degree: 143360 $$\Gamma_0(N)$$-optimal: yes Manin constant: 1

#### Special L-value

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar[2]/factorial(ar[1])

$$L^{(2)}(E,1)/2!$$ ≈ $$10.2221512047$$

## Local data

This elliptic curve is not semistable.

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

sage: E.local_data()

gp: ellglobalred(E)[5]

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$2$$ $$I_{16}$$ Non-split multiplicative 1 1 16 16
$$5$$ $$1$$ $$I_0^{*}$$ Additive 1 2 6 0
$$7$$ $$1$$ $$I_{1}$$ Split multiplicative -1 1 1 1
$$293$$ $$1$$ $$I_{1}$$ Non-split multiplicative 1 1 1 1

## Galois representations

The 2-adic representation attached to this elliptic curve is surjective.

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ .

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

Note: $$p$$-adic regulator data only exists for primes $$p\ge5$$ of good ordinary reduction.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 293 nonsplit ordinary add split ss ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary ss nonsplit 7 6 - 5 2,2 2 2 2 2 2 4 2 2 2 2,2 2 0 0 - 0 0,0 0 0 0 0 0 0 0 0 0 0,0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has no rational isogenies. Its isogeny class 102550.n consists of this curve only.

## Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
3 3.1.2051.1 $$\Z/2\Z$$ Not in database
6 6.0.8627738651.1 $$\Z/2\Z \times \Z/2\Z$$ Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.