Show commands for: Magma / SageMath / Pari/GP

## Minimal Weierstrass equation

magma: E := EllipticCurve([1, 0, 1, -11, 58]); // or

magma: E := EllipticCurve("102550a1");

sage: E = EllipticCurve([1, 0, 1, -11, 58]) # or

sage: E = EllipticCurve("102550a1")

gp: E = ellinit([1, 0, 1, -11, 58]) \\ or

gp: E = ellinit("102550a1")

$$y^2 + x y + y = x^{3} - 11 x + 58$$

## Mordell-Weil group structure

$$\Z$$

### Infinite order Mordell-Weil generator and height

magma: Generators(E);

sage: E.gens()

 $$P$$ = $$\left(1, -8\right)$$ $$\hat{h}(P)$$ ≈ 0.474425144718

## Integral points

magma: IntegralPoints(E);

sage: E.integral_points()

$$\left(-2, 9\right)$$, $$\left(-2, -8\right)$$, $$\left(1, 6\right)$$, $$\left(1, -8\right)$$

## Invariants

 magma: Conductor(E);  sage: E.conductor().factor()  gp: ellglobalred(E) Conductor: $$102550$$ = $$2 \cdot 5^{2} \cdot 7 \cdot 293$$ magma: Discriminant(E);  sage: E.discriminant().factor()  gp: E.disc Discriminant: $$-1435700$$ = $$-1 \cdot 2^{2} \cdot 5^{2} \cdot 7^{2} \cdot 293$$ magma: jInvariant(E);  sage: E.j_invariant().factor()  gp: E.j j-invariant: $$-\frac{5151505}{57428}$$ = $$-1 \cdot 2^{-2} \cdot 5 \cdot 7^{-2} \cdot 101^{3} \cdot 293^{-1}$$ Endomorphism ring: $$\Z$$ (no Complex Multiplication) Sato-Tate Group: $\mathrm{SU}(2)$

## BSD invariants

 magma: Rank(E);  sage: E.rank() Rank: $$1$$ magma: Regulator(E);  sage: E.regulator() Regulator: $$0.474425144718$$ magma: RealPeriod(E);  sage: E.period_lattice().omega()  gp: E.omega Real period: $$2.29273543714$$ magma: TamagawaNumbers(E);  sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[i,1],gr[i]] | i<-[1..#gr[,1]]] Tamagawa product: $$4$$  = $$2\cdot1\cdot2\cdot1$$ magma: Order(TorsionSubgroup(E));  sage: E.torsion_order()  gp: elltors(E) Torsion order: $$1$$ magma: MordellWeilShaInformation(E);  sage: E.sha().an_numerical() Analytic order of Ш: $$1$$ (exact)

## Modular invariants

#### Modular form 102550.2.a.m

magma: ModularForm(E);

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy)/(2*xy+E.a1*xy+E.a3)

$$q - q^{2} + q^{3} + q^{4} - q^{6} - q^{7} - q^{8} - 2q^{9} - q^{11} + q^{12} - 4q^{13} + q^{14} + q^{16} + 2q^{17} + 2q^{18} + q^{19} + O(q^{20})$$

 magma: ModularDegree(E);  sage: E.modular_degree() Modular degree: 13248 $$\Gamma_0(N)$$-optimal: yes Manin constant: 1

#### Special L-value

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar/factorial(ar)

$$L'(E,1)$$ ≈ $$4.35092536627$$

## Local data

This elliptic curve is not semistable.

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

sage: E.local_data()

gp: ellglobalred(E)

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$2$$ $$I_{2}$$ Non-split multiplicative 1 1 2 2
$$5$$ $$1$$ $$II$$ Additive 1 2 2 0
$$7$$ $$2$$ $$I_{2}$$ Non-split multiplicative 1 1 2 2
$$293$$ $$1$$ $$I_{1}$$ Non-split multiplicative 1 1 1 1

## Galois representations

The 2-adic representation attached to this elliptic curve is surjective.

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ .

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

Note: $$p$$-adic regulator data only exists for primes $$p\ge5$$ of good ordinary reduction.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 293 nonsplit ordinary add nonsplit ordinary ordinary ordinary ordinary ss ss ordinary ordinary ordinary ordinary ordinary nonsplit 3 1 - 1 1 1 1 1 3,1 1,1 1 1 1 1 1 1 0 0 - 0 0 0 0 0 0,0 0,0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has no rational isogenies. Its isogeny class 102550.m consists of this curve only.

## Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
3 3.1.29300.3 $$\Z/2\Z$$ Not in database
6 6.0.1006150280000.3 $$\Z/2\Z \times \Z/2\Z$$ Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.