Show commands for:
SageMath
sage: E = EllipticCurve("102.c1")
sage: E.isogeny_class()
Elliptic curves in class 102.c
sage: E.isogeny_class().curves
| LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
|---|---|---|---|---|---|
| 102.c1 | 102b5 | [1, 0, 0, -27744, -1781010] | [2] | 128 | |
| 102.c2 | 102b3 | [1, 0, 0, -1734, -27936] | [2, 2] | 64 | |
| 102.c3 | 102b6 | [1, 0, 0, -1644, -30942] | [2] | 128 | |
| 102.c4 | 102b2 | [1, 0, 0, -114, -396] | [2, 4] | 32 | |
| 102.c5 | 102b1 | [1, 0, 0, -34, 68] | [8] | 16 | \(\Gamma_0(N)\)-optimal |
| 102.c6 | 102b4 | [1, 0, 0, 226, -2232] | [4] | 64 |
Rank
sage: E.rank()
The elliptic curves in class 102.c have rank \(0\).
Modular form 102.2.a.c
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrrrr} 1 & 2 & 4 & 4 & 8 & 8 \\ 2 & 1 & 2 & 2 & 4 & 4 \\ 4 & 2 & 1 & 4 & 8 & 8 \\ 4 & 2 & 4 & 1 & 2 & 2 \\ 8 & 4 & 8 & 2 & 1 & 4 \\ 8 & 4 & 8 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.