Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
102.a1 |
102a1 |
102.a |
102a |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 17 \) |
\( 2^{2} \cdot 3^{2} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.6.0.4 |
2B |
$0.143253892$ |
$1$ |
|
$15$ |
$8$ |
$-0.763528$ |
$1771561/612$ |
$[1, 1, 0, -2, 0]$ |
\(y^2+xy=x^3+x^2-2x\) |
102.a2 |
102a2 |
102.a |
102a |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 17 \) |
\( - 2 \cdot 3^{4} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.6.0.5 |
2B |
$0.286507785$ |
$1$ |
|
$8$ |
$16$ |
$-0.416955$ |
$46268279/46818$ |
$[1, 1, 0, 8, 10]$ |
\(y^2+xy=x^3+x^2+8x+10\) |
102.b1 |
102c3 |
102.b |
102c |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 17 \) |
\( 2^{18} \cdot 3^{2} \cdot 17^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2, 3$ |
8.6.0.4, 3.8.0.2 |
2B, 3B.1.2 |
$1$ |
$1$ |
|
$1$ |
$72$ |
$0.641426$ |
$46753267515625/11591221248$ |
$[1, 0, 1, -751, -6046]$ |
\(y^2+xy+y=x^3-751x-6046\) |
102.b2 |
102c1 |
102.b |
102c |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 17 \) |
\( 2^{6} \cdot 3^{6} \cdot 17 \) |
$0$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2, 3$ |
8.6.0.4, 3.8.0.1 |
2B, 3B.1.1 |
$1$ |
$1$ |
|
$5$ |
$24$ |
$0.092120$ |
$1845026709625/793152$ |
$[1, 0, 1, -256, 1550]$ |
\(y^2+xy+y=x^3-256x+1550\) |
102.b3 |
102c2 |
102.b |
102c |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 17 \) |
\( - 2^{3} \cdot 3^{12} \cdot 17^{2} \) |
$0$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2, 3$ |
8.6.0.5, 3.8.0.1 |
2B, 3B.1.1 |
$1$ |
$1$ |
|
$4$ |
$48$ |
$0.438694$ |
$-1107111813625/1228691592$ |
$[1, 0, 1, -216, 2062]$ |
\(y^2+xy+y=x^3-216x+2062\) |
102.b4 |
102c4 |
102.b |
102c |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 17 \) |
\( - 2^{9} \cdot 3^{4} \cdot 17^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2, 3$ |
8.6.0.5, 3.8.0.2 |
2B, 3B.1.2 |
$1$ |
$1$ |
|
$0$ |
$144$ |
$0.988000$ |
$655215969476375/1001033261568$ |
$[1, 0, 1, 1809, -37790]$ |
\(y^2+xy+y=x^3+1809x-37790\) |
102.c1 |
102b5 |
102.c |
102b |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 17 \) |
\( 2 \cdot 3^{2} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
16.96.0.136 |
2B |
$1$ |
$4$ |
$2$ |
$0$ |
$128$ |
$0.847078$ |
$2361739090258884097/5202$ |
$[1, 0, 0, -27744, -1781010]$ |
\(y^2+xy=x^3-27744x-1781010\) |
102.c2 |
102b3 |
102.c |
102b |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 17 \) |
\( 2^{2} \cdot 3^{4} \cdot 17^{4} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.96.0.48 |
2Cs |
$1$ |
$1$ |
|
$2$ |
$64$ |
$0.500504$ |
$576615941610337/27060804$ |
$[1, 0, 0, -1734, -27936]$ |
\(y^2+xy=x^3-1734x-27936\) |
102.c3 |
102b6 |
102.c |
102b |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 17 \) |
\( - 2 \cdot 3^{2} \cdot 17^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.96.0.165 |
2B |
$1$ |
$1$ |
|
$0$ |
$128$ |
$0.847078$ |
$-491411892194497/125563633938$ |
$[1, 0, 0, -1644, -30942]$ |
\(y^2+xy=x^3-1644x-30942\) |
102.c4 |
102b2 |
102.c |
102b |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 17 \) |
\( 2^{4} \cdot 3^{8} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.96.0.38 |
2Cs |
$1$ |
$1$ |
|
$6$ |
$32$ |
$0.153931$ |
$163936758817/30338064$ |
$[1, 0, 0, -114, -396]$ |
\(y^2+xy=x^3-114x-396\) |
102.c5 |
102b1 |
102.c |
102b |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 17 \) |
\( 2^{8} \cdot 3^{4} \cdot 17 \) |
$0$ |
$\Z/8\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
16.96.0.97 |
2B |
$1$ |
$1$ |
|
$7$ |
$16$ |
$-0.192642$ |
$4354703137/352512$ |
$[1, 0, 0, -34, 68]$ |
\(y^2+xy=x^3-34x+68\) |
102.c6 |
102b4 |
102.c |
102b |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 17 \) |
\( - 2^{2} \cdot 3^{16} \cdot 17 \) |
$0$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
16.96.0.99 |
2B |
$1$ |
$1$ |
|
$2$ |
$64$ |
$0.500504$ |
$1276229915423/2927177028$ |
$[1, 0, 0, 226, -2232]$ |
\(y^2+xy=x^3+226x-2232\) |