# Properties

 Label 101761c Number of curves $2$ Conductor $101761$ CM no Rank $0$ Graph # Related objects

Show commands for: SageMath
sage: E = EllipticCurve("c1")

sage: E.isogeny_class()

## Elliptic curves in class 101761c

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
101761.e2 101761c1 [1, 0, 0, -2120, -147047] [] 137592 $$\Gamma_0(N)$$-optimal
101761.e1 101761c2 [1, 0, 0, -3054950, 2055018109] [] 1513512

## Rank

sage: E.rank()

The elliptic curves in class 101761c have rank $$0$$.

## Complex multiplication

The elliptic curves in class 101761c do not have complex multiplication.

## Modular form 101761.2.a.c

sage: E.q_eigenform(10)

$$q - q^{2} - 2q^{3} - q^{4} + q^{5} + 2q^{6} - 2q^{7} + 3q^{8} + q^{9} - q^{10} + 2q^{12} + q^{13} + 2q^{14} - 2q^{15} - q^{16} + 5q^{17} - q^{18} - 6q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the Cremona numbering.

$$\left(\begin{array}{rr} 1 & 11 \\ 11 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with Cremona labels. 