Minimal Weierstrass equation
\( y^2 + x y = x^{3} - 3334962226 x - 74128716508108 \)
Mordell-Weil group structure
Integral points
Invariants
magma: Conductor(E);
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
|
|||||
Conductor: | \( 101478 \) | = | \(2 \cdot 3 \cdot 13 \cdot 1301\) | ||
magma: Discriminant(E);
sage: E.discriminant().factor()
gp: E.disc
|
|||||
Discriminant: | \(-3936639679171948631439024 \) | = | \(-1 \cdot 2^{4} \cdot 3 \cdot 13 \cdot 1301^{7} \) | ||
magma: jInvariant(E);
sage: E.j_invariant().factor()
gp: E.j
|
|||||
j-invariant: | \( -\frac{4102007684809181687432274264918049}{3936639679171948631439024} \) | = | \(-1 \cdot 2^{-4} \cdot 3^{-1} \cdot 7^{3} \cdot 13^{-1} \cdot 31^{3} \cdot 1301^{-7} \cdot 737687497^{3}\) | ||
Endomorphism ring: | \(\Z\) | (no Complex Multiplication) | |||
Sato-Tate Group: | $\mathrm{SU}(2)$ |
BSD invariants
magma: Rank(E);
sage: E.rank()
|
|||
Rank: | \(0\) | ||
magma: Regulator(E);
sage: E.regulator()
|
|||
Regulator: | \(1\) | ||
magma: RealPeriod(E);
sage: E.period_lattice().omega()
gp: E.omega[1]
|
|||
Real period: | \(0.009933374386\) | ||
magma: TamagawaNumbers(E);
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
|
|||
Tamagawa product: | \( 4 \) = \( 2^{2}\cdot1\cdot1\cdot1 \) | ||
magma: Order(TorsionSubgroup(E));
sage: E.torsion_order()
gp: elltors(E)[1]
|
|||
Torsion order: | \(1\) | ||
magma: MordellWeilShaInformation(E);
sage: E.sha().an_numerical()
|
|||
Analytic order of Ш: | \(196\) (exact) |
Modular invariants
Modular form 101478.2.a.k
magma: ModularDegree(E);
sage: E.modular_degree()
|
|||
Modular degree: | 69895168 | ||
\( \Gamma_0(N) \)-optimal: | no | ||
Manin constant: | 1 |
Special L-value
\( L(E,1) \) ≈ \( 7.78776551862 \)
Local data
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(N\)) | ord(\(\Delta\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|
\(2\) | \(4\) | \( I_{4} \) | Split multiplicative | -1 | 1 | 4 | 4 |
\(3\) | \(1\) | \( I_{1} \) | Split multiplicative | -1 | 1 | 1 | 1 |
\(13\) | \(1\) | \( I_{1} \) | Split multiplicative | -1 | 1 | 1 | 1 |
\(1301\) | \(1\) | \( I_{7} \) | Non-split multiplicative | 1 | 1 | 7 | 7 |
Galois representations
The 2-adic representation attached to this elliptic curve is surjective.
The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.
prime | Image of Galois representation |
---|---|
\(7\) | B.1.3 |
$p$-adic data
$p$-adic regulators
All \(p\)-adic regulators are identically \(1\) since the rank is \(0\).
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 13 | 1301 |
---|---|---|---|---|---|---|
Reduction type | split | split | ordinary | ordinary | split | nonsplit |
$\lambda$-invariant(s) | 3 | 1 | 0 | 4 | 1 | 0 |
$\mu$-invariant(s) | 0 | 0 | 0 | 1 | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 11$ of good reduction are zero.
Isogenies
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
7.
Its isogeny class 101478k
consists of 2 curves linked by isogenies of
degree 7.
Growth of torsion in number fields
The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base-change curve |
---|---|---|---|
3 | 3.1.50739.3 | \(\Z/2\Z\) | Not in database |
6 | \(\Q(\zeta_{7})\) | \(\Z/7\Z\) | Not in database |
6.0.130624821733419.4 | \(\Z/2\Z \times \Z/2\Z\) | Not in database | |
7 | 7.1.185461554762574272.10 | \(\Z/7\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.