Properties

Label 101478k2
Conductor 101478
Discriminant -3936639679171948631439024
j-invariant \( -\frac{4102007684809181687432274264918049}{3936639679171948631439024} \)
CM no
Rank 0
Torsion Structure \(\mathrm{Trivial}\)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Minimal Weierstrass equation

magma: E := EllipticCurve([1, 0, 0, -3334962226, -74128716508108]); // or
 
magma: E := EllipticCurve("101478k2");
 
sage: E = EllipticCurve([1, 0, 0, -3334962226, -74128716508108]) # or
 
sage: E = EllipticCurve("101478k2")
 
gp: E = ellinit([1, 0, 0, -3334962226, -74128716508108]) \\ or
 
gp: E = ellinit("101478k2")
 

\( y^2 + x y = x^{3} - 3334962226 x - 74128716508108 \)

Mordell-Weil group structure

Trivial

Integral points

magma: IntegralPoints(E);
 
sage: E.integral_points()
 
None

Invariants

magma: Conductor(E);
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
Conductor: \( 101478 \)  =  \(2 \cdot 3 \cdot 13 \cdot 1301\)
magma: Discriminant(E);
 
sage: E.discriminant().factor()
 
gp: E.disc
 
Discriminant: \(-3936639679171948631439024 \)  =  \(-1 \cdot 2^{4} \cdot 3 \cdot 13 \cdot 1301^{7} \)
magma: jInvariant(E);
 
sage: E.j_invariant().factor()
 
gp: E.j
 
j-invariant: \( -\frac{4102007684809181687432274264918049}{3936639679171948631439024} \)  =  \(-1 \cdot 2^{-4} \cdot 3^{-1} \cdot 7^{3} \cdot 13^{-1} \cdot 31^{3} \cdot 1301^{-7} \cdot 737687497^{3}\)
Endomorphism ring: \(\Z\)   (no Complex Multiplication)
Sato-Tate Group: $\mathrm{SU}(2)$

BSD invariants

magma: Rank(E);
 
sage: E.rank()
 
Rank: \(0\)
magma: Regulator(E);
 
sage: E.regulator()
 
Regulator: \(1\)
magma: RealPeriod(E);
 
sage: E.period_lattice().omega()
 
gp: E.omega[1]
 
Real period: \(0.009933374386\)
magma: TamagawaNumbers(E);
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
Tamagawa product: \( 4 \)  = \( 2^{2}\cdot1\cdot1\cdot1 \)
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
Torsion order: \(1\)
magma: MordellWeilShaInformation(E);
 
sage: E.sha().an_numerical()
 
Analytic order of Ш: \(196\) (exact)

Modular invariants

Modular form 101478.2.a.k

magma: ModularForm(E);
 
sage: E.q_eigenform(20)
 
gp: xy = elltaniyama(E);
 
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)
 

\( q + q^{2} + q^{3} + q^{4} - q^{5} + q^{6} + q^{7} + q^{8} + q^{9} - q^{10} + 5q^{11} + q^{12} + q^{13} + q^{14} - q^{15} + q^{16} + 4q^{17} + q^{18} + 6q^{19} + O(q^{20}) \)

For more coefficients, see the Downloads section to the right.

magma: ModularDegree(E);
 
sage: E.modular_degree()
 
Modular degree: 69895168
\( \Gamma_0(N) \)-optimal: no
Manin constant: 1

Special L-value

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
sage: r = E.rank();
 
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: ar = ellanalyticrank(E);
 
gp: ar[2]/factorial(ar[1])
 

\( L(E,1) \) ≈ \( 7.78776551862 \)

Local data

magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
prime Tamagawa number Kodaira symbol Reduction type Root number ord(\(N\)) ord(\(\Delta\)) ord\((j)_{-}\)
\(2\) \(4\) \( I_{4} \) Split multiplicative -1 1 4 4
\(3\) \(1\) \( I_{1} \) Split multiplicative -1 1 1 1
\(13\) \(1\) \( I_{1} \) Split multiplicative -1 1 1 1
\(1301\) \(1\) \( I_{7} \) Non-split multiplicative 1 1 7 7

Galois representations

The 2-adic representation attached to this elliptic curve is surjective.

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 
sage: rho = E.galois_representation();
 
sage: [rho.image_type(p) for p in rho.non_surjective()]
 

The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.

prime Image of Galois representation
\(7\) B.1.3

$p$-adic data

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]
 

All \(p\)-adic regulators are identically \(1\) since the rank is \(0\).

Iwasawa invariants

$p$ 2 3 5 7 13 1301
Reduction type split split ordinary ordinary split nonsplit
$\lambda$-invariant(s) 3 1 0 4 1 0
$\mu$-invariant(s) 0 0 0 1 0 0

All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 11$ of good reduction are zero.

Isogenies

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 7.
Its isogeny class 101478k consists of 2 curves linked by isogenies of degree 7.

Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
3 3.1.50739.3 \(\Z/2\Z\) Not in database
6 \(\Q(\zeta_{7})\) \(\Z/7\Z\) Not in database
6.0.130624821733419.4 \(\Z/2\Z \times \Z/2\Z\) Not in database
7 7.1.185461554762574272.10 \(\Z/7\Z\) Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.