Properties

Label 101478.k
Number of curves 2
Conductor 101478
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath

sage: E = EllipticCurve("101478.k1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 101478.k

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
101478.k1 101478k2 [1, 0, 0, -3334962226, -74128716508108] [] 69895168  
101478.k2 101478k1 [1, 0, 0, 8938334, 2268820292] [7] 9985024 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 101478.k have rank \(0\).

Modular form 101478.2.a.k

sage: E.q_eigenform(10)
 
\( q + q^{2} + q^{3} + q^{4} - q^{5} + q^{6} + q^{7} + q^{8} + q^{9} - q^{10} + 5q^{11} + q^{12} + q^{13} + q^{14} - q^{15} + q^{16} + 4q^{17} + q^{18} + 6q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 7 \\ 7 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.