| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 1014.a1 |
1014a1 |
1014.a |
1014a |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 13^{2} \) |
\( - 2^{4} \cdot 3^{2} \cdot 13^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.2.0.1 |
|
$24$ |
$4$ |
$0$ |
$0.114266303$ |
$1$ |
|
$10$ |
$192$ |
$-0.051831$ |
$-169/144$ |
$1.17559$ |
$3.27740$ |
$[1, 1, 0, -3, -99]$ |
\(y^2+xy=x^3+x^2-3x-99\) |
4.2.0.a.1, 24.4.0-4.a.1.1 |
$[(18, 69)]$ |
| 1014.b1 |
1014c4 |
1014.b |
1014c |
$4$ |
$10$ |
\( 2 \cdot 3 \cdot 13^{2} \) |
\( 2^{10} \cdot 3^{2} \cdot 13^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 5$ |
2.3.0.1, 5.6.0.1 |
2B, 5B |
$780$ |
$288$ |
$5$ |
$0.737226056$ |
$1$ |
|
$4$ |
$2400$ |
$1.170006$ |
$18013780041269221/9216$ |
$1.09234$ |
$6.51936$ |
$[1, 0, 1, -70997, 7275296]$ |
\(y^2+xy+y=x^3-70997x+7275296\) |
2.3.0.a.1, 5.6.0.a.1, 10.36.0.b.1, 12.6.0.f.1, 26.6.0.b.1, $\ldots$ |
$[(147, 70)]$ |
| 1014.b2 |
1014c3 |
1014.b |
1014c |
$4$ |
$10$ |
\( 2 \cdot 3 \cdot 13^{2} \) |
\( - 2^{20} \cdot 3 \cdot 13^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 5$ |
2.3.0.1, 5.6.0.1 |
2B, 5B |
$780$ |
$288$ |
$5$ |
$1.474452113$ |
$1$ |
|
$3$ |
$1200$ |
$0.823432$ |
$-4395631034341/3145728$ |
$1.06506$ |
$5.31776$ |
$[1, 0, 1, -4437, 113440]$ |
\(y^2+xy+y=x^3-4437x+113440\) |
2.3.0.a.1, 5.6.0.a.1, 10.18.0.a.1, 12.6.0.f.1, 20.36.0.b.2, $\ldots$ |
$[(40, -1)]$ |
| 1014.b3 |
1014c2 |
1014.b |
1014c |
$4$ |
$10$ |
\( 2 \cdot 3 \cdot 13^{2} \) |
\( 2^{2} \cdot 3^{10} \cdot 13^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 5$ |
2.3.0.1, 5.6.0.1 |
2B, 5B |
$780$ |
$288$ |
$5$ |
$0.147445211$ |
$1$ |
|
$14$ |
$480$ |
$0.365287$ |
$476379541/236196$ |
$1.06546$ |
$3.99855$ |
$[1, 0, 1, -212, -466]$ |
\(y^2+xy+y=x^3-212x-466\) |
2.3.0.a.1, 5.6.0.a.1, 10.36.0.b.2, 12.6.0.f.1, 26.6.0.b.1, $\ldots$ |
$[(-9, 31)]$ |
| 1014.b4 |
1014c1 |
1014.b |
1014c |
$4$ |
$10$ |
\( 2 \cdot 3 \cdot 13^{2} \) |
\( - 2^{4} \cdot 3^{5} \cdot 13^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 5$ |
2.3.0.1, 5.6.0.1 |
2B, 5B |
$780$ |
$288$ |
$5$ |
$0.294890422$ |
$1$ |
|
$13$ |
$240$ |
$0.018713$ |
$5735339/3888$ |
$1.16005$ |
$3.36003$ |
$[1, 0, 1, 48, -50]$ |
\(y^2+xy+y=x^3+48x-50\) |
2.3.0.a.1, 5.6.0.a.1, 10.18.0.a.1, 12.6.0.f.1, 20.36.0.b.1, $\ldots$ |
$[(5, 15)]$ |
| 1014.c1 |
1014b1 |
1014.c |
1014b |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 13^{2} \) |
\( - 2^{8} \cdot 3^{6} \cdot 13^{8} \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.2.0.1, 3.8.0.1 |
3B.1.1 |
$24$ |
$32$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$4992$ |
$1.415201$ |
$-156116857/186624$ |
$1.01025$ |
$5.85206$ |
$[1, 0, 1, -10482, 722308]$ |
\(y^2+xy+y=x^3-10482x+722308\) |
3.8.0-3.a.1.2, 4.2.0.a.1, 12.16.0-12.a.1.6, 24.32.0-24.b.2.6 |
$[ ]$ |
| 1014.c2 |
1014b2 |
1014.c |
1014b |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 13^{2} \) |
\( - 2^{24} \cdot 3^{2} \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.2.0.1, 3.8.0.2 |
3B.1.2 |
$24$ |
$32$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$14976$ |
$1.964508$ |
$93603087383/150994944$ |
$1.05810$ |
$6.69821$ |
$[1, 0, 1, 88383, -13514252]$ |
\(y^2+xy+y=x^3+88383x-13514252\) |
3.8.0-3.a.1.1, 4.2.0.a.1, 12.16.0-12.a.1.5, 24.32.0-24.b.1.6 |
$[ ]$ |
| 1014.d1 |
1014e4 |
1014.d |
1014e |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 13^{2} \) |
\( 2^{4} \cdot 3^{5} \cdot 13^{10} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.6 |
2B |
$312$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$26880$ |
$2.250553$ |
$986551739719628473/111045168$ |
$1.06555$ |
$8.20940$ |
$[1, 1, 1, -3504979, 2524207265]$ |
\(y^2+xy+y=x^3+x^2-3504979x+2524207265\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 12.12.0.h.1, 24.24.0-12.h.1.6, $\ldots$ |
$[ ]$ |
| 1014.d2 |
1014e3 |
1014.d |
1014e |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 13^{2} \) |
\( 2^{4} \cdot 3^{20} \cdot 13^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.8 |
2B |
$312$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$26880$ |
$2.250553$ |
$1416134368422073/725251155408$ |
$1.07849$ |
$7.26364$ |
$[1, 1, 1, -395379, -32619423]$ |
\(y^2+xy+y=x^3+x^2-395379x-32619423\) |
2.3.0.a.1, 4.12.0-4.c.1.2, 24.24.0-24.ba.1.1, 26.6.0.b.1, 52.24.0-52.g.1.1, $\ldots$ |
$[ ]$ |
| 1014.d3 |
1014e2 |
1014.d |
1014e |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 13^{2} \) |
\( 2^{8} \cdot 3^{10} \cdot 13^{8} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.1 |
2Cs |
$156$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$13440$ |
$1.903978$ |
$242702053576633/2554695936$ |
$1.10395$ |
$7.00880$ |
$[1, 1, 1, -219619, 39160961]$ |
\(y^2+xy+y=x^3+x^2-219619x+39160961\) |
2.6.0.a.1, 4.12.0-2.a.1.1, 12.24.0-12.a.1.3, 52.24.0-52.b.1.2, 156.48.0.? |
$[ ]$ |
| 1014.d4 |
1014e1 |
1014.d |
1014e |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 13^{2} \) |
\( - 2^{16} \cdot 3^{5} \cdot 13^{7} \) |
$0$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.7 |
2B |
$312$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$3$ |
$6720$ |
$1.557405$ |
$-822656953/207028224$ |
$1.08584$ |
$6.06720$ |
$[1, 1, 1, -3299, 1521281]$ |
\(y^2+xy+y=x^3+x^2-3299x+1521281\) |
2.3.0.a.1, 4.12.0-4.c.1.1, 24.24.0-24.ba.1.9, 78.6.0.?, 104.24.0.?, $\ldots$ |
$[ ]$ |
| 1014.e1 |
1014d1 |
1014.e |
1014d |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 13^{2} \) |
\( - 2^{4} \cdot 3^{2} \cdot 13^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.2.0.1 |
|
$312$ |
$4$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2496$ |
$1.230644$ |
$-169/144$ |
$1.17559$ |
$5.50081$ |
$[1, 1, 1, -595, -214687]$ |
\(y^2+xy+y=x^3+x^2-595x-214687\) |
4.2.0.a.1, 312.4.0.? |
$[ ]$ |
| 1014.f1 |
1014f1 |
1014.f |
1014f |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 13^{2} \) |
\( - 2^{8} \cdot 3^{6} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.2.0.1, 3.4.0.1 |
3B |
$312$ |
$32$ |
$0$ |
$0.036626204$ |
$1$ |
|
$16$ |
$384$ |
$0.132727$ |
$-156116857/186624$ |
$1.01025$ |
$3.62865$ |
$[1, 0, 0, -62, 324]$ |
\(y^2+xy=x^3-62x+324\) |
3.4.0.a.1, 4.2.0.a.1, 12.8.0.a.1, 24.16.0.b.2, 39.8.0-3.a.1.1, $\ldots$ |
$[(4, 10)]$ |
| 1014.f2 |
1014f2 |
1014.f |
1014f |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 13^{2} \) |
\( - 2^{24} \cdot 3^{2} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.2.0.1, 3.4.0.1 |
3B |
$312$ |
$32$ |
$0$ |
$0.109878613$ |
$1$ |
|
$10$ |
$1152$ |
$0.682034$ |
$93603087383/150994944$ |
$1.05810$ |
$4.47480$ |
$[1, 0, 0, 523, -6111]$ |
\(y^2+xy=x^3+523x-6111\) |
3.4.0.a.1, 4.2.0.a.1, 12.8.0.a.1, 24.16.0.b.1, 39.8.0-3.a.1.2, $\ldots$ |
$[(82, 727)]$ |
| 1014.g1 |
1014g4 |
1014.g |
1014g |
$4$ |
$10$ |
\( 2 \cdot 3 \cdot 13^{2} \) |
\( 2^{10} \cdot 3^{2} \cdot 13^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 5$ |
2.3.0.1, 5.6.0.1 |
2B, 5B |
$780$ |
$288$ |
$5$ |
$1$ |
$1$ |
|
$0$ |
$31200$ |
$2.452480$ |
$18013780041269221/9216$ |
$1.09234$ |
$8.74277$ |
$[1, 0, 0, -11998412, 15995824272]$ |
\(y^2+xy=x^3-11998412x+15995824272\) |
2.3.0.a.1, 5.6.0.a.1, 10.36.0.b.1, 12.6.0.f.1, 26.6.0.b.1, $\ldots$ |
$[ ]$ |
| 1014.g2 |
1014g3 |
1014.g |
1014g |
$4$ |
$10$ |
\( 2 \cdot 3 \cdot 13^{2} \) |
\( - 2^{20} \cdot 3 \cdot 13^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 5$ |
2.3.0.1, 5.6.0.1 |
2B, 5B |
$780$ |
$288$ |
$5$ |
$1$ |
$1$ |
|
$1$ |
$15600$ |
$2.105907$ |
$-4395631034341/3145728$ |
$1.06506$ |
$7.54117$ |
$[1, 0, 0, -749772, 249978000]$ |
\(y^2+xy=x^3-749772x+249978000\) |
2.3.0.a.1, 5.6.0.a.1, 10.18.0.a.1, 12.6.0.f.1, 20.36.0.b.2, $\ldots$ |
$[ ]$ |
| 1014.g3 |
1014g2 |
1014.g |
1014g |
$4$ |
$10$ |
\( 2 \cdot 3 \cdot 13^{2} \) |
\( 2^{2} \cdot 3^{10} \cdot 13^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 5$ |
2.3.0.1, 5.6.0.1 |
2B, 5B |
$780$ |
$288$ |
$5$ |
$1$ |
$1$ |
|
$0$ |
$6240$ |
$1.647762$ |
$476379541/236196$ |
$1.06546$ |
$6.22196$ |
$[1, 0, 0, -35747, -987507]$ |
\(y^2+xy=x^3-35747x-987507\) |
2.3.0.a.1, 5.6.0.a.1, 10.36.0.b.2, 12.6.0.f.1, 26.6.0.b.1, $\ldots$ |
$[ ]$ |
| 1014.g4 |
1014g1 |
1014.g |
1014g |
$4$ |
$10$ |
\( 2 \cdot 3 \cdot 13^{2} \) |
\( - 2^{4} \cdot 3^{5} \cdot 13^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 5$ |
2.3.0.1, 5.6.0.1 |
2B, 5B |
$780$ |
$288$ |
$5$ |
$1$ |
$1$ |
|
$1$ |
$3120$ |
$1.301188$ |
$5735339/3888$ |
$1.16005$ |
$5.58345$ |
$[1, 0, 0, 8193, -117495]$ |
\(y^2+xy=x^3+8193x-117495\) |
2.3.0.a.1, 5.6.0.a.1, 10.18.0.a.1, 12.6.0.f.1, 20.36.0.b.1, $\ldots$ |
$[ ]$ |