Properties

Label 100800jn
Number of curves $4$
Conductor $100800$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("100800.mm1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 100800jn

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
100800.mm3 100800jn1 [0, 0, 0, -74700, -6886000] [2] 442368 \(\Gamma_0(N)\)-optimal
100800.mm4 100800jn2 [0, 0, 0, 117300, -36454000] [2] 884736  
100800.mm1 100800jn3 [0, 0, 0, -1514700, 716634000] [2] 1327104  
100800.mm2 100800jn4 [0, 0, 0, -1082700, 1133946000] [2] 2654208  

Rank

sage: E.rank()
 

The elliptic curves in class 100800jn have rank \(1\).

Modular form 100800.2.a.mm

sage: E.q_eigenform(10)
 
\( q + q^{7} + 2q^{13} + 2q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.