Properties

Label 100800.p
Number of curves 4
Conductor 100800
CM no
Rank 1
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("100800.p1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 100800.p

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
100800.p1 100800mg4 [0, 0, 0, -3854700, -2912814000] [2] 2359296  
100800.p2 100800mg3 [0, 0, 0, -1262700, 510354000] [2] 2359296  
100800.p3 100800mg2 [0, 0, 0, -254700, -40014000] [2, 2] 1179648  
100800.p4 100800mg1 [0, 0, 0, 33300, -3726000] [2] 589824 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 100800.p have rank \(1\).

Modular form 100800.2.a.p

sage: E.q_eigenform(10)
 
\( q - q^{7} - 4q^{11} - 6q^{13} + 2q^{17} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.