Properties

Label 100800.or
Number of curves $4$
Conductor $100800$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands for: SageMath
sage: E = EllipticCurve("or1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 100800.or

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
100800.or1 100800nv4 \([0, 0, 0, -91854000300, 10715075262502000]\) \(229625675762164624948320008/9568125\) \(3571283520000000000\) \([2]\) \(165150720\) \(4.4606\)  
100800.or2 100800nv2 \([0, 0, 0, -5740875300, 167423033752000]\) \(448487713888272974160064/91549016015625\) \(4271310891225000000000000\) \([2, 2]\) \(82575360\) \(4.1140\)  
100800.or3 100800nv3 \([0, 0, 0, -5721192300, 168628066378000]\) \(-55486311952875723077768/801237030029296875\) \(-299060118984375000000000000000\) \([2]\) \(165150720\) \(4.4606\)  
100800.or4 100800nv1 \([0, 0, 0, -360035175, 2597139043000]\) \(7079962908642659949376/100085966990454375\) \(72962669936041239375000000\) \([2]\) \(41287680\) \(3.7674\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 100800.or have rank \(0\).

Complex multiplication

The elliptic curves in class 100800.or do not have complex multiplication.

Modular form 100800.2.a.or

sage: E.q_eigenform(10)
 
\(q + q^{7} + 4q^{11} - 6q^{13} + 6q^{17} - 4q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.