Properties

Label 100800.o
Number of curves 2
Conductor 100800
CM no
Rank 1
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("100800.o1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 100800.o

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
100800.o1 100800hc2 [0, 0, 0, -2078940, 1153362800] [2] 2064384  
100800.o2 100800hc1 [0, 0, 0, -110640, 23558600] [2] 1032192 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 100800.o have rank \(1\).

Modular form 100800.2.a.o

sage: E.q_eigenform(10)
 
\( q - q^{7} - 4q^{11} - 6q^{13} + 2q^{17} - 6q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.