Properties

Label 100800.ml
Number of curves $4$
Conductor $100800$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("100800.ml1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 100800.ml

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
100800.ml1 100800jo3 [0, 0, 0, -672300, 185922000] [2] 1327104  
100800.ml2 100800jo1 [0, 0, 0, -168300, -26542000] [2] 442368 \(\Gamma_0(N)\)-optimal
100800.ml3 100800jo2 [0, 0, 0, -120300, -41998000] [2] 884736  
100800.ml4 100800jo4 [0, 0, 0, 1055700, 984258000] [2] 2654208  

Rank

sage: E.rank()
 

The elliptic curves in class 100800.ml have rank \(1\).

Modular form 100800.2.a.ml

sage: E.q_eigenform(10)
 
\( q + q^{7} + 2q^{13} + 2q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.