Show commands for:
SageMath
sage: E = EllipticCurve("iv1")
sage: E.isogeny_class()
Elliptic curves in class 100800.iv
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
100800.iv1 | 100800ft4 | [0, 0, 0, -5378700, -4801354000] | [2] | 2359296 | |
100800.iv2 | 100800ft2 | [0, 0, 0, -338700, -73834000] | [2, 2] | 1179648 | |
100800.iv3 | 100800ft1 | [0, 0, 0, -50700, 2774000] | [2] | 589824 | \(\Gamma_0(N)\)-optimal |
100800.iv4 | 100800ft3 | [0, 0, 0, 93300, -249226000] | [2] | 2359296 |
Rank
sage: E.rank()
The elliptic curves in class 100800.iv have rank \(1\).
Complex multiplication
The elliptic curves in class 100800.iv do not have complex multiplication.Modular form 100800.2.a.iv
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.