Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3+x^2-5250x-144690\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3+x^2z-5250xz^2-144690z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-6804027x-6648587946\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{4}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-3857/81, 8252/729)$ | $6.5624660360788977590107673786$ | $\infty$ |
| $(-42, 83)$ | $0$ | $4$ |
Integral points
\( \left(-42, 83\right) \), \( \left(-42, -42\right) \), \( \left(83, -42\right) \)
Invariants
| Conductor: | $N$ | = | \( 10005 \) | = | $3 \cdot 5 \cdot 23 \cdot 29$ |
|
| Discriminant: | $\Delta$ | = | $488525390625$ | = | $3 \cdot 5^{12} \cdot 23 \cdot 29 $ |
|
| j-invariant: | $j$ | = | \( \frac{16003198512756001}{488525390625} \) | = | $3^{-1} \cdot 5^{-12} \cdot 23^{-1} \cdot 29^{-1} \cdot 252001^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.0188516276784945392260651209$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.0188516276784945392260651209$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.910707606543615$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.050831846345313$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $6.5624660360788977590107673786$ |
|
| Real period: | $\Omega$ | ≈ | $0.56191495008638158970076318023$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 12 $ = $ 1\cdot( 2^{2} \cdot 3 )\cdot1\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $2.7656608313301362091475563663 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 2.765660831 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.561915 \cdot 6.562466 \cdot 12}{4^2} \\ & \approx 2.765660831\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 12288 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $3$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
| $5$ | $12$ | $I_{12}$ | split multiplicative | -1 | 1 | 12 | 12 |
| $23$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
| $29$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | $\ell$-adic index |
|---|---|---|---|
| $2$ | 2B | 4.12.0.7 | $12$ |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 80040 = 2^{3} \cdot 3 \cdot 5 \cdot 23 \cdot 29 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 32017 & 8 \\ 48028 & 33 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 80033 & 8 \\ 80032 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 30019 & 30018 \\ 10018 & 50035 \end{array}\right),\left(\begin{array}{rr} 26684 & 1 \\ 53383 & 6 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 80034 & 80035 \end{array}\right),\left(\begin{array}{rr} 10009 & 10008 \\ 50038 & 10015 \end{array}\right),\left(\begin{array}{rr} 66244 & 1 \\ 60743 & 6 \end{array}\right),\left(\begin{array}{rr} 76564 & 1 \\ 23 & 6 \end{array}\right)$.
The torsion field $K:=\Q(E[80040])$ is a degree-$134354497123123200$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/80040\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | good | $2$ | \( 2001 = 3 \cdot 23 \cdot 29 \) |
| $3$ | nonsplit multiplicative | $4$ | \( 667 = 23 \cdot 29 \) |
| $5$ | split multiplicative | $6$ | \( 2001 = 3 \cdot 23 \cdot 29 \) |
| $23$ | nonsplit multiplicative | $24$ | \( 435 = 3 \cdot 5 \cdot 29 \) |
| $29$ | split multiplicative | $30$ | \( 345 = 3 \cdot 5 \cdot 23 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 10005e
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{4}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{2001}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | 4.0.800400.2 | \(\Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | 8.2.35062036505498187.12 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | ord | nonsplit | split | ss | ss | ord | ord | ord | nonsplit | split | ord | ord | ord | ord | ss |
| $\lambda$-invariant(s) | 1 | 1 | 2 | 1,1 | 1,1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1,1 |
| $\mu$-invariant(s) | 0 | 0 | 0 | 0,0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 |
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.