Show commands for: Magma / SageMath / Pari/GP

## Minimal Weierstrass equation

magma: E := EllipticCurve([1, 1, 0, -5537, 156294]); // or

magma: E := EllipticCurve("10005d4");

sage: E = EllipticCurve([1, 1, 0, -5537, 156294]) # or

sage: E = EllipticCurve("10005d4")

gp: E = ellinit([1, 1, 0, -5537, 156294]) \\ or

gp: E = ellinit("10005d4")

$$y^2 + x y = x^{3} + x^{2} - 5537 x + 156294$$

## Mordell-Weil group structure

$$\Z\times \Z/{4}\Z$$

### Infinite order Mordell-Weil generator and height

magma: Generators(E);

sage: E.gens()

 $$P$$ = $$\left(\frac{655}{4}, \frac{14679}{8}\right)$$ $$\hat{h}(P)$$ ≈ 6.37506773309

## Torsion generators

magma: TorsionSubgroup(E);

sage: E.torsion_subgroup().gens()

gp: elltors(E)

$$\left(50, 62\right)$$

## Integral points

magma: IntegralPoints(E);

sage: E.integral_points()

$$\left(50, 62\right)$$, $$\left(50, -112\right)$$

## Invariants

 magma: Conductor(E);  sage: E.conductor().factor()  gp: ellglobalred(E) Conductor: $$10005$$ = $$3 \cdot 5 \cdot 23 \cdot 29$$ magma: Discriminant(E);  sage: E.discriminant().factor()  gp: E.disc Discriminant: $$732035835$$ = $$3^{2} \cdot 5 \cdot 23 \cdot 29^{4}$$ magma: jInvariant(E);  sage: E.j_invariant().factor()  gp: E.j j-invariant: $$\frac{18778886261717401}{732035835}$$ = $$3^{-2} \cdot 5^{-1} \cdot 23^{-1} \cdot 29^{-4} \cdot 157^{3} \cdot 1693^{3}$$ Endomorphism ring: $$\Z$$ (no Complex Multiplication) Sato-Tate Group: $\mathrm{SU}(2)$

## BSD invariants

 magma: Rank(E);  sage: E.rank() Rank: $$1$$ magma: Regulator(E);  sage: E.regulator() Regulator: $$6.37506773309$$ magma: RealPeriod(E);  sage: E.period_lattice().omega()  gp: E.omega Real period: $$1.50270753192$$ magma: TamagawaNumbers(E);  sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[i,1],gr[i]] | i<-[1..#gr[,1]]] Tamagawa product: $$8$$  = $$2\cdot1\cdot1\cdot2^{2}$$ magma: Order(TorsionSubgroup(E));  sage: E.torsion_order()  gp: elltors(E) Torsion order: $$4$$ magma: MordellWeilShaInformation(E);  sage: E.sha().an_numerical() Analytic order of Ш: $$1$$ (exact)

## Modular invariants

#### Modular form 10005.2.a.k

magma: ModularForm(E);

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy)/(2*xy+E.a1*xy+E.a3)

$$q + q^{2} - q^{3} - q^{4} + q^{5} - q^{6} - 3q^{8} + q^{9} + q^{10} + 4q^{11} + q^{12} - 2q^{13} - q^{15} - q^{16} - 6q^{17} + q^{18} + 4q^{19} + O(q^{20})$$

 magma: ModularDegree(E);  sage: E.modular_degree() Modular degree: 7680 $$\Gamma_0(N)$$-optimal: no Manin constant: 1

#### Special L-value

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar/factorial(ar)

$$L'(E,1)$$ ≈ $$4.78993114951$$

## Local data

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

sage: E.local_data()

gp: ellglobalred(E)

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$3$$ $$2$$ $$I_{2}$$ Non-split multiplicative 1 1 2 2
$$5$$ $$1$$ $$I_{1}$$ Split multiplicative -1 1 1 1
$$23$$ $$1$$ $$I_{1}$$ Non-split multiplicative 1 1 1 1
$$29$$ $$4$$ $$I_{4}$$ Split multiplicative -1 1 4 4

## Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X13h.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^2\Z_2)$ generated by $\left(\begin{array}{rr} 3 & 0 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 0 & 3 \end{array}\right)$ and has index 12.

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$2$$ B

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

$$p$$-adic regulators are not yet computed for curves that are not $$\Gamma_0$$-optimal.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 ordinary nonsplit split ss ordinary ordinary ordinary ordinary nonsplit split ordinary ordinary ordinary ss ss 3 1 2 1,1 1 1 1 1 1 2 1 1 1 1,1 1,1 0 0 0 0,0 0 0 0 0 0 0 0 0 0 0,0 0,0

## Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2 and 4.
Its isogeny class 10005d consists of 4 curves linked by isogenies of degrees dividing 4.

## Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{4}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
2 $$\Q(\sqrt{115})$$ $$\Z/2\Z \times \Z/4\Z$$ Not in database
4 4.4.13926960.2 $$\Z/8\Z$$ Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.