Properties

Label 10005.l
Number of curves 2
Conductor 10005
CM no
Rank 1
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath

sage: E = EllipticCurve("10005.l1")
sage: E.isogeny_class()

Elliptic curves in class 10005.l

sage: E.isogeny_class().curves
LMFDB label Cremona label Weierstrass coefficients Torsion order Modular degree Optimality
10005.l1 10005g2 [1, 1, 0, -112452, -14561001] 2 66048  
10005.l2 10005g1 [1, 1, 0, -6747, -248544] 2 33024 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()

The elliptic curves in class 10005.l have rank \(1\).

Modular form 10005.2.a.l

sage: E.q_eigenform(10)
\( q + q^{2} - q^{3} - q^{4} + q^{5} - q^{6} + 4q^{7} - 3q^{8} + q^{9} + q^{10} + 6q^{11} + q^{12} - 6q^{13} + 4q^{14} - q^{15} - q^{16} + q^{18} - 2q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels.