Properties

Label 100016p
Number of curves $4$
Conductor $100016$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("p1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 100016p have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(7\)\(1 + T\)
\(19\)\(1 + T\)
\(47\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - 3 T + 3 T^{2}\) 1.3.ad
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(11\) \( 1 + 2 T + 11 T^{2}\) 1.11.c
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(23\) \( 1 + 2 T + 23 T^{2}\) 1.23.c
\(29\) \( 1 + 7 T + 29 T^{2}\) 1.29.h
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 100016p do not have complex multiplication.

Modular form 100016.2.a.p

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{5} + q^{7} - 3 q^{9} - 2 q^{13} - 6 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 100016p

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
100016.h3 100016p1 \([0, 0, 0, -39611, -3034390]\) \(1678074290715537/1900304\) \(7783645184\) \([2]\) \(113664\) \(1.1830\) \(\Gamma_0(N)\)-optimal
100016.h2 100016p2 \([0, 0, 0, -39931, -2982870]\) \(1719073016770257/56424301444\) \(231113938714624\) \([2, 2]\) \(227328\) \(1.5295\)  
100016.h4 100016p3 \([0, 0, 0, 12709, -10278774]\) \(55424004754383/11175184480978\) \(-45773555634085888\) \([2]\) \(454656\) \(1.8761\)  
100016.h1 100016p4 \([0, 0, 0, -97691, 7610314]\) \(25172562615580017/8459034366482\) \(34648204765110272\) \([4]\) \(454656\) \(1.8761\)