Properties

Label 100011e
Number of curves $1$
Conductor $100011$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("e1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 100011e1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 + T\)
\(17\)\(1 - T\)
\(37\)\(1 - T\)
\(53\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - 2 T + 2 T^{2}\) 1.2.ac
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(13\) \( 1 - 3 T + 13 T^{2}\) 1.13.ad
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 + 7 T + 23 T^{2}\) 1.23.h
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 100011e do not have complex multiplication.

Modular form 100011.2.a.e

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{2} + q^{3} + 2 q^{4} + q^{5} - 2 q^{6} + q^{9} - 2 q^{10} - 5 q^{11} + 2 q^{12} - 4 q^{13} + q^{15} - 4 q^{16} + q^{17} - 2 q^{18} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 100011e

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
100011.a1 100011e1 \([0, 1, 1, 1070, 7408]\) \(135353378115584/99811078011\) \(-99811078011\) \([]\) \(121968\) \(0.79881\) \(\Gamma_0(N)\)-optimal