# Properties

 Label 100010.g1 Conductor 100010 Discriminant 4114576216480000000 j-invariant $$\frac{153288006309736388746325476561}{4114576216480000000}$$ CM no Rank 0 Torsion Structure $$\mathrm{Trivial}$$

# Related objects

Show commands for: Magma / SageMath / Pari/GP

## Minimal Weierstrass equation

magma: E := EllipticCurve([1, 0, 0, -111496565, -453157570783]); // or

magma: E := EllipticCurve("100010i1");

sage: E = EllipticCurve([1, 0, 0, -111496565, -453157570783]) # or

sage: E = EllipticCurve("100010i1")

gp: E = ellinit([1, 0, 0, -111496565, -453157570783]) \\ or

gp: E = ellinit("100010i1")

$$y^2 + x y = x^{3} - 111496565 x - 453157570783$$

Trivial

## Integral points

magma: IntegralPoints(E);

sage: E.integral_points()

None

## Invariants

 magma: Conductor(E);  sage: E.conductor().factor()  gp: ellglobalred(E)[1] Conductor: $$100010$$ = $$2 \cdot 5 \cdot 73 \cdot 137$$ magma: Discriminant(E);  sage: E.discriminant().factor()  gp: E.disc Discriminant: $$4114576216480000000$$ = $$2^{11} \cdot 5^{7} \cdot 73 \cdot 137^{4}$$ magma: jInvariant(E);  sage: E.j_invariant().factor()  gp: E.j j-invariant: $$\frac{153288006309736388746325476561}{4114576216480000000}$$ = $$2^{-11} \cdot 5^{-7} \cdot 73^{-1} \cdot 137^{-4} \cdot 397^{3} \cdot 13480693^{3}$$ Endomorphism ring: $$\Z$$ (no Complex Multiplication) Sato-Tate Group: $\mathrm{SU}(2)$

## BSD invariants

 magma: Rank(E);  sage: E.rank() Rank: $$0$$ magma: Regulator(E);  sage: E.regulator() Regulator: $$1$$ magma: RealPeriod(E);  sage: E.period_lattice().omega()  gp: E.omega[1] Real period: $$0.0464605325342$$ magma: TamagawaNumbers(E);  sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]] Tamagawa product: $$154$$  = $$11\cdot7\cdot1\cdot2$$ magma: Order(TorsionSubgroup(E));  sage: E.torsion_order()  gp: elltors(E)[1] Torsion order: $$1$$ magma: MordellWeilShaInformation(E);  sage: E.sha().an_numerical() Analytic order of Ш: $$1$$ (exact)

## Modular invariants

#### Modular form 100010.2.a.g

magma: ModularForm(E);

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

$$q + q^{2} + q^{3} + q^{4} + q^{5} + q^{6} + q^{7} + q^{8} - 2q^{9} + q^{10} + 3q^{11} + q^{12} + 4q^{13} + q^{14} + q^{15} + q^{16} - 6q^{17} - 2q^{18} + O(q^{20})$$

For more coefficients, see the Downloads section to the right.

 magma: ModularDegree(E);  sage: E.modular_degree() Modular degree: 9624384 $$\Gamma_0(N)$$-optimal: yes Manin constant: 1

#### Special L-value

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar[2]/factorial(ar[1])

$$L(E,1)$$ ≈ $$7.15492201026$$

## Local data

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

sage: E.local_data()

gp: ellglobalred(E)[5]

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$11$$ $$I_{11}$$ Split multiplicative -1 1 11 11
$$5$$ $$7$$ $$I_{7}$$ Split multiplicative -1 1 7 7
$$73$$ $$1$$ $$I_{1}$$ Split multiplicative -1 1 1 1
$$137$$ $$2$$ $$I_{4}$$ Non-split multiplicative 1 1 4 4

## Galois representations

The 2-adic representation attached to this elliptic curve is surjective.

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ .

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

All $$p$$-adic regulators are identically $$1$$ since the rank is $$0$$.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 73 137 split ordinary split ordinary ordinary ordinary ordinary ss ordinary ordinary ordinary ordinary ordinary ordinary ordinary split nonsplit 3 4 1 2 2 0 0 0,0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0,0 0 0 0 0 0 0 0 0 0

## Isogenies

This curve has no rational isogenies. Its isogeny class 100010.g consists of this curve only.

## Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
3 3.3.2920.1 $$\Z/2\Z$$ Not in database
6 6.6.24897088000.1 $$\Z/2\Z \times \Z/2\Z$$ Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.