Learn more

Refine search


Results (7 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
1.1-a2 1.1-a 6.6.300125.1 \( 1 \) 0 $\Z/37\Z$ $\mathrm{SU}(2)$ $1$ $391404.4679$ 0.521880 \( -9317 \) \( \bigl[-2 a^{5} + a^{4} + 14 a^{3} + 4 a^{2} - 9 a - 2\) , \( -3 a^{5} + 2 a^{4} + 20 a^{3} + 3 a^{2} - 12 a\) , \( -5 a^{5} + a^{4} + 37 a^{3} + 18 a^{2} - 26 a - 7\) , \( 7 a^{5} - a^{4} - 51 a^{3} - 28 a^{2} + 27 a + 11\) , \( -13 a^{5} + 4 a^{4} + 92 a^{3} + 40 a^{2} - 56 a - 16\bigr] \) ${y}^2+\left(-2a^{5}+a^{4}+14a^{3}+4a^{2}-9a-2\right){x}{y}+\left(-5a^{5}+a^{4}+37a^{3}+18a^{2}-26a-7\right){y}={x}^{3}+\left(-3a^{5}+2a^{4}+20a^{3}+3a^{2}-12a\right){x}^{2}+\left(7a^{5}-a^{4}-51a^{3}-28a^{2}+27a+11\right){x}-13a^{5}+4a^{4}+92a^{3}+40a^{2}-56a-16$
841.16-a2 841.16-a 6.6.300125.1 \( 29^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $982.0658897$ 1.79263 \( -9317 \) \( \bigl[-a^{5} + 8 a^{3} + 4 a^{2} - 7 a - 1\) , \( -a^{5} + 7 a^{3} + 6 a^{2} - 2 a - 3\) , \( -8 a^{5} + 2 a^{4} + 58 a^{3} + 27 a^{2} - 39 a - 12\) , \( -3 a^{5} + 25 a^{3} + 9 a^{2} - 18 a - 4\) , \( -9 a^{5} + 6 a^{4} + 58 a^{3} + 18 a^{2} - 39 a - 11\bigr] \) ${y}^2+\left(-a^{5}+8a^{3}+4a^{2}-7a-1\right){x}{y}+\left(-8a^{5}+2a^{4}+58a^{3}+27a^{2}-39a-12\right){y}={x}^{3}+\left(-a^{5}+7a^{3}+6a^{2}-2a-3\right){x}^{2}+\left(-3a^{5}+25a^{3}+9a^{2}-18a-4\right){x}-9a^{5}+6a^{4}+58a^{3}+18a^{2}-39a-11$
841.17-a2 841.17-a 6.6.300125.1 \( 29^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $982.0658897$ 1.79263 \( -9317 \) \( \bigl[-6 a^{5} + 2 a^{4} + 43 a^{3} + 17 a^{2} - 28 a - 6\) , \( -a^{5} + 8 a^{3} + 5 a^{2} - 9 a - 4\) , \( -2 a^{5} + 15 a^{3} + 10 a^{2} - 9 a - 5\) , \( -a^{5} - 2 a^{4} + 8 a^{3} + 19 a^{2} - 10\) , \( 7 a^{5} - 5 a^{4} - 49 a^{3} - a^{2} + 38 a - 6\bigr] \) ${y}^2+\left(-6a^{5}+2a^{4}+43a^{3}+17a^{2}-28a-6\right){x}{y}+\left(-2a^{5}+15a^{3}+10a^{2}-9a-5\right){y}={x}^{3}+\left(-a^{5}+8a^{3}+5a^{2}-9a-4\right){x}^{2}+\left(-a^{5}-2a^{4}+8a^{3}+19a^{2}-10\right){x}+7a^{5}-5a^{4}-49a^{3}-a^{2}+38a-6$
841.18-a2 841.18-a 6.6.300125.1 \( 29^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $982.0658897$ 1.79263 \( -9317 \) \( \bigl[-3 a^{5} + 23 a^{3} + 14 a^{2} - 16 a - 5\) , \( 9 a^{5} - 2 a^{4} - 65 a^{3} - 32 a^{2} + 40 a + 13\) , \( 3 a^{5} - a^{4} - 21 a^{3} - 9 a^{2} + 12 a + 5\) , \( 29 a^{5} - 7 a^{4} - 209 a^{3} - 98 a^{2} + 129 a + 35\) , \( 22 a^{5} - 5 a^{4} - 157 a^{3} - 80 a^{2} + 93 a + 30\bigr] \) ${y}^2+\left(-3a^{5}+23a^{3}+14a^{2}-16a-5\right){x}{y}+\left(3a^{5}-a^{4}-21a^{3}-9a^{2}+12a+5\right){y}={x}^{3}+\left(9a^{5}-2a^{4}-65a^{3}-32a^{2}+40a+13\right){x}^{2}+\left(29a^{5}-7a^{4}-209a^{3}-98a^{2}+129a+35\right){x}+22a^{5}-5a^{4}-157a^{3}-80a^{2}+93a+30$
841.19-a2 841.19-a 6.6.300125.1 \( 29^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $982.0658897$ 1.79263 \( -9317 \) \( \bigl[3 a^{5} - a^{4} - 21 a^{3} - 9 a^{2} + 13 a + 5\) , \( 7 a^{5} - a^{4} - 51 a^{3} - 28 a^{2} + 31 a + 11\) , \( a + 1\) , \( -9 a^{5} + 3 a^{4} + 64 a^{3} + 27 a^{2} - 39 a - 11\) , \( 2 a^{5} - a^{4} - 14 a^{3} - 5 a^{2} + 7 a + 2\bigr] \) ${y}^2+\left(3a^{5}-a^{4}-21a^{3}-9a^{2}+13a+5\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(7a^{5}-a^{4}-51a^{3}-28a^{2}+31a+11\right){x}^{2}+\left(-9a^{5}+3a^{4}+64a^{3}+27a^{2}-39a-11\right){x}+2a^{5}-a^{4}-14a^{3}-5a^{2}+7a+2$
841.20-a2 841.20-a 6.6.300125.1 \( 29^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $982.0658897$ 1.79263 \( -9317 \) \( \bigl[-a^{5} + 8 a^{3} + 5 a^{2} - 8 a - 3\) , \( -5 a^{5} + a^{4} + 36 a^{3} + 19 a^{2} - 21 a - 9\) , \( -8 a^{5} + 2 a^{4} + 58 a^{3} + 27 a^{2} - 38 a - 11\) , \( -18 a^{5} + 5 a^{4} + 130 a^{3} + 56 a^{2} - 83 a - 23\) , \( -9 a^{5} + 2 a^{4} + 66 a^{3} + 30 a^{2} - 43 a - 13\bigr] \) ${y}^2+\left(-a^{5}+8a^{3}+5a^{2}-8a-3\right){x}{y}+\left(-8a^{5}+2a^{4}+58a^{3}+27a^{2}-38a-11\right){y}={x}^{3}+\left(-5a^{5}+a^{4}+36a^{3}+19a^{2}-21a-9\right){x}^{2}+\left(-18a^{5}+5a^{4}+130a^{3}+56a^{2}-83a-23\right){x}-9a^{5}+2a^{4}+66a^{3}+30a^{2}-43a-13$
841.21-a2 841.21-a 6.6.300125.1 \( 29^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $982.0658897$ 1.79263 \( -9317 \) \( \bigl[-2 a^{5} + a^{4} + 14 a^{3} + 4 a^{2} - 10 a - 1\) , \( -3 a^{5} + 23 a^{3} + 14 a^{2} - 18 a - 5\) , \( -6 a^{5} + 2 a^{4} + 43 a^{3} + 17 a^{2} - 28 a - 6\) , \( 20 a^{5} - 7 a^{4} - 141 a^{3} - 56 a^{2} + 82 a + 21\) , \( 20 a^{5} - 6 a^{4} - 142 a^{3} - 62 a^{2} + 83 a + 22\bigr] \) ${y}^2+\left(-2a^{5}+a^{4}+14a^{3}+4a^{2}-10a-1\right){x}{y}+\left(-6a^{5}+2a^{4}+43a^{3}+17a^{2}-28a-6\right){y}={x}^{3}+\left(-3a^{5}+23a^{3}+14a^{2}-18a-5\right){x}^{2}+\left(20a^{5}-7a^{4}-141a^{3}-56a^{2}+82a+21\right){x}+20a^{5}-6a^{4}-142a^{3}-62a^{2}+83a+22$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.