Learn more

Refine search


Results (displaying both matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
85.2-b2 85.2-b 5.5.24217.1 \( 5 \cdot 17 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.015098821$ $8142.513599$ 1.97506496 \( \frac{185066934807448}{1445} a^{4} - \frac{87464764407119}{1445} a^{3} - \frac{909727616081443}{1445} a^{2} + \frac{231799410298786}{1445} a + \frac{559295724774971}{1445} \) \( \bigl[a^{4} - a^{3} - 4 a^{2} + 4 a + 2\) , \( -3 a^{4} + a^{3} + 14 a^{2} - 3 a - 6\) , \( a^{4} - a^{3} - 4 a^{2} + 4 a + 2\) , \( -50 a^{4} + 26 a^{3} + 232 a^{2} - 74 a - 103\) , \( 65 a^{4} - 10 a^{3} - 330 a^{2} - 4 a + 225\bigr] \) ${y}^2+\left(a^{4}-a^{3}-4a^{2}+4a+2\right){x}{y}+\left(a^{4}-a^{3}-4a^{2}+4a+2\right){y}={x}^{3}+\left(-3a^{4}+a^{3}+14a^{2}-3a-6\right){x}^{2}+\left(-50a^{4}+26a^{3}+232a^{2}-74a-103\right){x}+65a^{4}-10a^{3}-330a^{2}-4a+225$
425.2-b2 425.2-b 5.5.24217.1 \( 5^{2} \cdot 17 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $130.0143180$ 1.67094058 \( \frac{185066934807448}{1445} a^{4} - \frac{87464764407119}{1445} a^{3} - \frac{909727616081443}{1445} a^{2} + \frac{231799410298786}{1445} a + \frac{559295724774971}{1445} \) \( \bigl[a + 1\) , \( -3 a^{4} + a^{3} + 15 a^{2} - 2 a - 6\) , \( 3 a^{4} - a^{3} - 14 a^{2} + 3 a + 5\) , \( -26 a^{4} + 10 a^{3} + 121 a^{2} - 23 a - 65\) , \( -37 a^{4} + 20 a^{3} + 174 a^{2} - 41 a - 104\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(3a^{4}-a^{3}-14a^{2}+3a+5\right){y}={x}^{3}+\left(-3a^{4}+a^{3}+15a^{2}-2a-6\right){x}^{2}+\left(-26a^{4}+10a^{3}+121a^{2}-23a-65\right){x}-37a^{4}+20a^{3}+174a^{2}-41a-104$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.