Label
Class
Class size
Class degree
Base field
Field degree
Field signature
Conductor
Conductor norm
Discriminant norm
Root analytic conductor
Bad primes
Rank
Torsion
CM
CM
Sato-Tate
$\Q$-curve
Base change
Semistable
Potentially good
Nonmax $\ell$
mod-$\ell$ images
$Ш_{\textrm{an}}$
Tamagawa
Regulator
Period
Leading coeff
j-invariant
Weierstrass coefficients
Weierstrass equation
16.1-a1
16.1-a
$2$
$2$
4.4.9909.1
$4$
$[4, 0]$
16.1
\( 2^{4} \)
\( 2^{4} \)
$12.57965$
$(2)$
$1$
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$2$
2B
$1$
\( 1 \)
$0.390079341$
$529.1940998$
2.073733912
\( -720868474875 a^{3} + \frac{2726844170253}{2} a^{2} + \frac{3499385683905}{2} a - 1144450579761 \)
\( \bigl[a^{2} - 3\) , \( a^{2} - a - 3\) , \( a^{2} - 3\) , \( 104 a^{3} + 58 a^{2} - 602 a - 641\) , \( -354 a^{3} - 185 a^{2} + 2035 a + 2117\bigr] \)
${y}^2+\left(a^{2}-3\right){x}{y}+\left(a^{2}-3\right){y}={x}^{3}+\left(a^{2}-a-3\right){x}^{2}+\left(104a^{3}+58a^{2}-602a-641\right){x}-354a^{3}-185a^{2}+2035a+2117$
16.1-b1
16.1-b
$2$
$2$
4.4.9909.1
$4$
$[4, 0]$
16.1
\( 2^{4} \)
\( 2^{4} \)
$12.57965$
$(2)$
$1$
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$2$
2B
$1$
\( 1 \)
$1.541049041$
$201.2992047$
3.116331176
\( -720868474875 a^{3} + \frac{2726844170253}{2} a^{2} + \frac{3499385683905}{2} a - 1144450579761 \)
\( \bigl[1\) , \( -a - 1\) , \( 1\) , \( 16 a^{3} + 8 a^{2} - 86 a - 106\) , \( 12 a^{3} + 2 a^{2} - 55 a - 81\bigr] \)
${y}^2+{x}{y}+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(16a^{3}+8a^{2}-86a-106\right){x}+12a^{3}+2a^{2}-55a-81$
Download
displayed columns for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.