Learn more

Refine search


Results (4 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
1.1-a4 1.1-a \(\Q(\zeta_{20})^+\) \( 1 \) 0 $\Z/2\Z$ $-100$ $N(\mathrm{U}(1))$ $1$ $2.420130817$ 0.338223563 \( -19691491018752 a^{2} + 71244477160128 \) \( \bigl[a^{3} + a^{2} - 3 a - 2\) , \( a - 1\) , \( a^{2} + a - 2\) , \( 140 a^{3} + 150 a^{2} - 541 a - 619\) , \( 1727 a^{3} + 1963 a^{2} - 6449 a - 7491\bigr] \) ${y}^2+\left(a^{3}+a^{2}-3a-2\right){x}{y}+\left(a^{2}+a-2\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(140a^{3}+150a^{2}-541a-619\right){x}+1727a^{3}+1963a^{2}-6449a-7491$
1.1-a5 1.1-a \(\Q(\zeta_{20})^+\) \( 1 \) 0 $\Z/10\Z$ $-100$ $N(\mathrm{U}(1))$ $1$ $1512.581761$ 0.338223563 \( -19691491018752 a^{2} + 71244477160128 \) \( \bigl[a^{3} + a^{2} - 3 a - 2\) , \( a - 1\) , \( a^{2} + a - 2\) , \( 140 a^{3} + 150 a^{2} - 541 a - 619\) , \( -1577 a^{3} - 1803 a^{2} + 5829 a + 6789\bigr] \) ${y}^2+\left(a^{3}+a^{2}-3a-2\right){x}{y}+\left(a^{2}+a-2\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(140a^{3}+150a^{2}-541a-619\right){x}-1577a^{3}-1803a^{2}+5829a+6789$
256.1-f3 256.1-f \(\Q(\zeta_{20})^+\) \( 2^{8} \) 0 $\Z/2\Z$ $-100$ $N(\mathrm{U}(1))$ $1$ $15.12581761$ 2.113897274 \( -19691491018752 a^{2} + 71244477160128 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 398 a^{3} - 275 a^{2} - 878 a - 88\) , \( -2744 a^{3} + 10808 a^{2} - 168 a - 19880\bigr] \) ${y}^2={x}^{3}+\left(398a^{3}-275a^{2}-878a-88\right){x}-2744a^{3}+10808a^{2}-168a-19880$
256.1-f4 256.1-f \(\Q(\zeta_{20})^+\) \( 2^{8} \) 0 $\Z/2\Z$ $-100$ $N(\mathrm{U}(1))$ $1$ $15.12581761$ 2.113897274 \( -19691491018752 a^{2} + 71244477160128 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 398 a^{3} - 275 a^{2} - 878 a - 88\) , \( 2744 a^{3} - 10808 a^{2} + 168 a + 19880\bigr] \) ${y}^2={x}^{3}+\left(398a^{3}-275a^{2}-878a-88\right){x}+2744a^{3}-10808a^{2}+168a+19880$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.