Label
Class
Class size
Class degree
Base field
Field degree
Field signature
Conductor
Conductor norm
Discriminant norm
Root analytic conductor
Bad primes
Rank
Torsion
CM
CM
Sato-Tate
$\Q$-curve
Base change
Semistable
Potentially good
Nonmax $\ell$
mod-$\ell$ images
$Ш_{\textrm{an}}$
Tamagawa
Regulator
Period
Leading coeff
j-invariant
Weierstrass coefficients
Weierstrass equation
1.1-a4
1.1-a
$6$
$50$
\(\Q(\zeta_{20})^+\)
$4$
$[4, 0]$
1.1
\( 1 \)
\( 1 \)
$3.99626$
$\textsf{none}$
0
$\Z/2\Z$
$\textsf{potential}$
$-100$
$N(\mathrm{U}(1))$
✓
✓
✓
$5$
5B.1.4[2]
$25$
\( 1 \)
$1$
$2.420130817$
0.338223563
\( -19691491018752 a^{2} + 71244477160128 \)
\( \bigl[a^{3} + a^{2} - 3 a - 2\) , \( a - 1\) , \( a^{2} + a - 2\) , \( 140 a^{3} + 150 a^{2} - 541 a - 619\) , \( 1727 a^{3} + 1963 a^{2} - 6449 a - 7491\bigr] \)
${y}^2+\left(a^{3}+a^{2}-3a-2\right){x}{y}+\left(a^{2}+a-2\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(140a^{3}+150a^{2}-541a-619\right){x}+1727a^{3}+1963a^{2}-6449a-7491$
1.1-a5
1.1-a
$6$
$50$
\(\Q(\zeta_{20})^+\)
$4$
$[4, 0]$
1.1
\( 1 \)
\( 1 \)
$3.99626$
$\textsf{none}$
0
$\Z/10\Z$
$\textsf{potential}$
$-100$
$N(\mathrm{U}(1))$
✓
✓
✓
$5$
5B.1.1[2]
$1$
\( 1 \)
$1$
$1512.581761$
0.338223563
\( -19691491018752 a^{2} + 71244477160128 \)
\( \bigl[a^{3} + a^{2} - 3 a - 2\) , \( a - 1\) , \( a^{2} + a - 2\) , \( 140 a^{3} + 150 a^{2} - 541 a - 619\) , \( -1577 a^{3} - 1803 a^{2} + 5829 a + 6789\bigr] \)
${y}^2+\left(a^{3}+a^{2}-3a-2\right){x}{y}+\left(a^{2}+a-2\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(140a^{3}+150a^{2}-541a-619\right){x}-1577a^{3}-1803a^{2}+5829a+6789$
256.1-f3
256.1-f
$6$
$50$
\(\Q(\zeta_{20})^+\)
$4$
$[4, 0]$
256.1
\( 2^{8} \)
\( 2^{24} \)
$7.99252$
$(a^3-a^2-3a+2)$
0
$\Z/2\Z$
$\textsf{potential}$
$-100$
$N(\mathrm{U}(1))$
✓
✓
$5$
5B.4.1[2]
$25$
\( 1 \)
$1$
$15.12581761$
2.113897274
\( -19691491018752 a^{2} + 71244477160128 \)
\( \bigl[0\) , \( 0\) , \( 0\) , \( 398 a^{3} - 275 a^{2} - 878 a - 88\) , \( -2744 a^{3} + 10808 a^{2} - 168 a - 19880\bigr] \)
${y}^2={x}^{3}+\left(398a^{3}-275a^{2}-878a-88\right){x}-2744a^{3}+10808a^{2}-168a-19880$
256.1-f4
256.1-f
$6$
$50$
\(\Q(\zeta_{20})^+\)
$4$
$[4, 0]$
256.1
\( 2^{8} \)
\( 2^{24} \)
$7.99252$
$(a^3-a^2-3a+2)$
0
$\Z/2\Z$
$\textsf{potential}$
$-100$
$N(\mathrm{U}(1))$
✓
✓
$5$
5B.4.1[2]
$25$
\( 1 \)
$1$
$15.12581761$
2.113897274
\( -19691491018752 a^{2} + 71244477160128 \)
\( \bigl[0\) , \( 0\) , \( 0\) , \( 398 a^{3} - 275 a^{2} - 878 a - 88\) , \( 2744 a^{3} - 10808 a^{2} + 168 a + 19880\bigr] \)
${y}^2={x}^{3}+\left(398a^{3}-275a^{2}-878a-88\right){x}+2744a^{3}-10808a^{2}+168a+19880$
Download
displayed columns for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.