Learn more

Refine search


Results (displaying both matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
89.3-a2 89.3-a \(\Q(\zeta_{15})^+\) \( 89 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $4.662275233$ 1.251019722 \( -\frac{83630646617237}{704969} a^{3} - \frac{59371662388246}{704969} a^{2} + \frac{221021181736913}{704969} a + \frac{33436542823570}{704969} \) \( \bigl[a^{2} - 2\) , \( a^{3} + a^{2} - 2 a - 3\) , \( a^{3} - 2 a + 1\) , \( -30 a^{3} - 25 a^{2} + 74 a + 12\) , \( -169 a^{3} - 140 a^{2} + 421 a + 89\bigr] \) ${y}^2+\left(a^{2}-2\right){x}{y}+\left(a^{3}-2a+1\right){y}={x}^{3}+\left(a^{3}+a^{2}-2a-3\right){x}^{2}+\left(-30a^{3}-25a^{2}+74a+12\right){x}-169a^{3}-140a^{2}+421a+89$
89.3-b1 89.3-b \(\Q(\zeta_{15})^+\) \( 89 \) $1$ $\Z/3\Z$ $\mathrm{SU}(2)$ $0.019242294$ $1474.084412$ 1.127565233 \( -\frac{83630646617237}{704969} a^{3} - \frac{59371662388246}{704969} a^{2} + \frac{221021181736913}{704969} a + \frac{33436542823570}{704969} \) \( \bigl[a^{2} + a - 2\) , \( -a^{3} + a^{2} + 4 a - 2\) , \( a^{3} - 2 a\) , \( 82 a^{3} + 31 a^{2} - 291 a - 75\) , \( -396 a^{3} - 143 a^{2} + 1404 a + 326\bigr] \) ${y}^2+\left(a^{2}+a-2\right){x}{y}+\left(a^{3}-2a\right){y}={x}^{3}+\left(-a^{3}+a^{2}+4a-2\right){x}^{2}+\left(82a^{3}+31a^{2}-291a-75\right){x}-396a^{3}-143a^{2}+1404a+326$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.