Label
Class
Class size
Class degree
Base field
Field degree
Field signature
Conductor
Conductor norm
Discriminant norm
Root analytic conductor
Bad primes
Rank
Torsion
CM
CM
Sato-Tate
$\Q$-curve
Base change
Semistable
Potentially good
Nonmax $\ell$
mod-$\ell$ images
$Ш_{\textrm{an}}$
Tamagawa
Regulator
Period
Leading coeff
j-invariant
Weierstrass coefficients
Weierstrass equation
25.3-a4
25.3-a
$4$
$4$
3.3.169.1
$3$
$[3, 0]$
25.3
\( 5^{2} \)
\( - 5^{5} \)
$1.98642$
$(-a^2+2a+3), (-a+1)$
0
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$2$
2B
$1$
\( 2^{2} \)
$1$
$13.06442140$
1.004955493
\( \frac{5230339383024320708}{625} a^{2} - \frac{2486715541714430821}{125} a - \frac{3797798826756471012}{625} \)
\( \bigl[a\) , \( a^{2} - a - 4\) , \( a\) , \( -42 a^{2} + 82 a + 30\) , \( -181 a^{2} + 405 a + 123\bigr] \)
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a^{2}-a-4\right){x}^{2}+\left(-42a^{2}+82a+30\right){x}-181a^{2}+405a+123$
125.3-d4
125.3-d
$4$
$4$
3.3.169.1
$3$
$[3, 0]$
125.3
\( 5^{3} \)
\( - 5^{11} \)
$2.59757$
$(-a^2+2a+3), (-a+1)$
0
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
$2$
2B
$1$
\( 2^{4} \)
$1$
$3.758051438$
1.156323519
\( \frac{5230339383024320708}{625} a^{2} - \frac{2486715541714430821}{125} a - \frac{3797798826756471012}{625} \)
\( \bigl[a^{2} - a - 2\) , \( 0\) , \( 1\) , \( -106 a^{2} + 226 a + 71\) , \( -809 a^{2} + 1942 a + 588\bigr] \)
${y}^2+\left(a^{2}-a-2\right){x}{y}+{y}={x}^{3}+\left(-106a^{2}+226a+71\right){x}-809a^{2}+1942a+588$
125.6-a3
125.6-a
$4$
$4$
3.3.169.1
$3$
$[3, 0]$
125.6
\( 5^{3} \)
\( - 5^{11} \)
$2.59757$
$(-a^2+2a+3), (-a+1)$
0
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
$2$
2B
$1$
\( 2^{2} \)
$1$
$20.75017167$
1.596167051
\( \frac{5230339383024320708}{625} a^{2} - \frac{2486715541714430821}{125} a - \frac{3797798826756471012}{625} \)
\( \bigl[a^{2} - a - 3\) , \( a - 1\) , \( a + 1\) , \( -40 a^{2} - 60 a - 10\) , \( -61 a^{2} - 320 a - 317\bigr] \)
${y}^2+\left(a^{2}-a-3\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-40a^{2}-60a-10\right){x}-61a^{2}-320a-317$
625.2-i4
625.2-i
$4$
$4$
3.3.169.1
$3$
$[3, 0]$
625.2
\( 5^{4} \)
\( - 5^{17} \)
$3.39674$
$(-a^2+2a+3), (-a+1)$
$1$
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
$2$
2B
$1$
\( 2^{3} \)
$0.314644427$
$17.45028329$
2.534138954
\( \frac{5230339383024320708}{625} a^{2} - \frac{2486715541714430821}{125} a - \frac{3797798826756471012}{625} \)
\( \bigl[a + 1\) , \( -1\) , \( a^{2} - a - 3\) , \( -578 a^{2} + 1304 a + 402\) , \( 10961 a^{2} - 25981 a - 7931\bigr] \)
${y}^2+\left(a+1\right){x}{y}+\left(a^{2}-a-3\right){y}={x}^{3}-{x}^{2}+\left(-578a^{2}+1304a+402\right){x}+10961a^{2}-25981a-7931$
625.5-e4
625.5-e
$4$
$4$
3.3.169.1
$3$
$[3, 0]$
625.5
\( 5^{4} \)
\( - 5^{11} \)
$3.39674$
$(-a^2+2a+3), (-a^2+a+2), (-a+1)$
$1$
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
$2$
2B
$1$
\( 2^{3} \)
$0.145547235$
$39.02001967$
2.621195068
\( \frac{5230339383024320708}{625} a^{2} - \frac{2486715541714430821}{125} a - \frac{3797798826756471012}{625} \)
\( \bigl[a^{2} - a - 2\) , \( a^{2} - 2\) , \( a^{2} - a - 2\) , \( -2915 a^{2} + 6933 a + 2117\) , \( 127464 a^{2} - 303009 a - 92544\bigr] \)
${y}^2+\left(a^{2}-a-2\right){x}{y}+\left(a^{2}-a-2\right){y}={x}^{3}+\left(a^{2}-2\right){x}^{2}+\left(-2915a^{2}+6933a+2117\right){x}+127464a^{2}-303009a-92544$
Download
displayed columns for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.