Learn more

Refine search


Results (3 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
26.1-a1 26.1-a 3.3.148.1 \( 2 \cdot 13 \) 0 $\Z/3\Z$ $\mathrm{SU}(2)$ $1$ $83.69718755$ 0.764429604 \( \frac{47519}{26} a^{2} - \frac{15283}{13} a - \frac{161671}{26} \) \( \bigl[1\) , \( a^{2} - 2 a - 3\) , \( a^{2} - 2\) , \( -a^{2} + 4\) , \( -a - 1\bigr] \) ${y}^2+{x}{y}+\left(a^{2}-2\right){y}={x}^{3}+\left(a^{2}-2a-3\right){x}^{2}+\left(-a^{2}+4\right){x}-a-1$
208.1-b2 208.1-b 3.3.148.1 \( 2^{4} \cdot 13 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.009164736$ $190.9012932$ 1.725755341 \( \frac{47519}{26} a^{2} - \frac{15283}{13} a - \frac{161671}{26} \) \( \bigl[a^{2} - a - 2\) , \( a^{2} - a - 1\) , \( a^{2} - a - 2\) , \( -3 a^{2} + 9 a - 5\) , \( 14 a^{2} - 34 a + 8\bigr] \) ${y}^2+\left(a^{2}-a-2\right){x}{y}+\left(a^{2}-a-2\right){y}={x}^{3}+\left(a^{2}-a-1\right){x}^{2}+\left(-3a^{2}+9a-5\right){x}+14a^{2}-34a+8$
338.2-c1 338.2-c 3.3.148.1 \( 2 \cdot 13^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $16.95622935$ 2.787586934 \( \frac{47519}{26} a^{2} - \frac{15283}{13} a - \frac{161671}{26} \) \( \bigl[a^{2} - a - 1\) , \( -a^{2} + 2\) , \( a^{2} - a - 1\) , \( -3\) , \( 3 a^{2} + a - 7\bigr] \) ${y}^2+\left(a^{2}-a-1\right){x}{y}+\left(a^{2}-a-1\right){y}={x}^{3}+\left(-a^{2}+2\right){x}^{2}-3{x}+3a^{2}+a-7$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.