Label
Class
Class size
Class degree
Base field
Field degree
Field signature
Conductor
Conductor norm
Discriminant norm
Root analytic conductor
Bad primes
Rank
Torsion
CM
CM
Sato-Tate
$\Q$-curve
Base change
Semistable
Potentially good
Nonmax $\ell$
mod-$\ell$ images
$Ш_{\textrm{an}}$
Tamagawa
Regulator
Period
Leading coeff
j-invariant
Weierstrass coefficients
Weierstrass equation
19.1-b4
19.1-b
$4$
$10$
3.3.148.1
$3$
$[3, 0]$
19.1
\( 19 \)
\( - 19^{5} \)
$1.77580$
$(-a^2-a-1)$
$1$
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$2, 5$
2B , 5B.1.2
$1$
\( 1 \)
$2.529681702$
$2.907033256$
0.453363221
\( \frac{21475865428001583104}{2476099} a^{2} - \frac{53285799291084800000}{2476099} a + \frac{14499029076062806016}{2476099} \)
\( \bigl[0\) , \( -a^{2} + 2 a + 3\) , \( 1\) , \( -14413186731445 a^{2} - 16864675023680 a + 6641756824108\) , \( -63968762883395881049 a^{2} - 74848985016046516967 a + 29477517729190614798\bigr] \)
${y}^2+{y}={x}^{3}+\left(-a^{2}+2a+3\right){x}^{2}+\left(-14413186731445a^{2}-16864675023680a+6641756824108\right){x}-63968762883395881049a^{2}-74848985016046516967a+29477517729190614798$
304.1-g4
304.1-g
$4$
$10$
3.3.148.1
$3$
$[3, 0]$
304.1
\( 2^{4} \cdot 19 \)
\( - 2^{12} \cdot 19^{5} \)
$2.81891$
$(a^2-a-2), (-a^2-a-1)$
0
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
$2, 5$
2B , 5B.4.2
$1$
\( 5 \)
$1$
$20.09383536$
2.064628865
\( \frac{21475865428001583104}{2476099} a^{2} - \frac{53285799291084800000}{2476099} a + \frac{14499029076062806016}{2476099} \)
\( \bigl[0\) , \( -a^{2} + 2 a + 3\) , \( 0\) , \( -165965341312 a^{2} - 194193803116 a + 76478676008\) , \( 79041132025753191 a^{2} + 92484960470958028 a - 36423033143090658\bigr] \)
${y}^2={x}^{3}+\left(-a^{2}+2a+3\right){x}^{2}+\left(-165965341312a^{2}-194193803116a+76478676008\right){x}+79041132025753191a^{2}+92484960470958028a-36423033143090658$
361.2-a3
361.2-a
$4$
$10$
3.3.148.1
$3$
$[3, 0]$
361.2
\( 19^{2} \)
\( - 19^{11} \)
$2.90082$
$(-a^2-a-1)$
0
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
$2, 5$
2B , 5B.4.2
$25$
\( 2^{2} \)
$1$
$1.829152679$
3.758885601
\( \frac{21475865428001583104}{2476099} a^{2} - \frac{53285799291084800000}{2476099} a + \frac{14499029076062806016}{2476099} \)
\( \bigl[0\) , \( a^{2} - 2\) , \( a^{2} - 2\) , \( -25887000022915 a^{2} - 30290028906100 a + 11929017660105\) , \( 153975054462382521802 a^{2} + 180164130503941360671 a - 70953418405815227560\bigr] \)
${y}^2+\left(a^{2}-2\right){y}={x}^{3}+\left(a^{2}-2\right){x}^{2}+\left(-25887000022915a^{2}-30290028906100a+11929017660105\right){x}+153975054462382521802a^{2}+180164130503941360671a-70953418405815227560$
475.2-a4
475.2-a
$4$
$10$
3.3.148.1
$3$
$[3, 0]$
475.2
\( 5^{2} \cdot 19 \)
\( - 5^{6} \cdot 19^{5} \)
$3.03658$
$(a^2-a-1), (-a^2-a-1)$
0
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
$2, 5$
2B , 5B.4.2
$1$
\( 2 \cdot 5 \)
$1$
$15.63274437$
3.212509180
\( \frac{21475865428001583104}{2476099} a^{2} - \frac{53285799291084800000}{2476099} a + \frac{14499029076062806016}{2476099} \)
\( \bigl[0\) , \( a - 1\) , \( a^{2} - 2\) , \( -160804400212360 a^{2} - 188155055678488 a + 74100456918827\) , \( -2383827087438207587333 a^{2} - 2789283861464543203831 a + 1098494047186335627733\bigr] \)
${y}^2+\left(a^{2}-2\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-160804400212360a^{2}-188155055678488a+74100456918827\right){x}-2383827087438207587333a^{2}-2789283861464543203831a+1098494047186335627733$
Download
displayed columns for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.