Label
Class
Class size
Class degree
Base field
Field degree
Field signature
Conductor
Conductor norm
Discriminant norm
Root analytic conductor
Bad primes
Rank
Torsion
CM
CM
Sato-Tate
$\Q$-curve
Base change
Semistable
Potentially good
Nonmax $\ell$
mod-$\ell$ images
$Ш_{\textrm{an}}$
Tamagawa
Regulator
Period
Leading coeff
j-invariant
Weierstrass coefficients
Weierstrass equation
20.1-a3
20.1-a
$12$
$24$
3.3.148.1
$3$
$[3, 0]$
20.1
\( 2^{2} \cdot 5 \)
\( 2^{4} \cdot 5^{4} \)
$1.79105$
$(a^2-a-2), (a^2-a-1)$
0
$\Z/2\Z\oplus\Z/6\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
$2, 3$
2Cs , 3B.1.1
$1$
\( 2 \cdot 3 \)
$1$
$224.9714518$
0.770522476
\( \frac{185785252}{625} a^{2} - \frac{445080936}{625} a + \frac{123160356}{625} \)
\( \bigl[a^{2} - a - 2\) , \( 0\) , \( a^{2} - 1\) , \( -56443 a^{2} - 66043 a + 26009\) , \( 13218157 a^{2} + 15466387 a - 6091074\bigr] \)
${y}^2+\left(a^{2}-a-2\right){x}{y}+\left(a^{2}-1\right){y}={x}^{3}+\left(-56443a^{2}-66043a+26009\right){x}+13218157a^{2}+15466387a-6091074$
80.1-b9
80.1-b
$12$
$24$
3.3.148.1
$3$
$[3, 0]$
80.1
\( 2^{4} \cdot 5 \)
\( 2^{4} \cdot 5^{4} \)
$2.25658$
$(a^2-a-2), (a^2-a-1)$
0
$\Z/2\Z\oplus\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
$2, 3$
2Cs , 3B
$1$
\( 2^{2} \)
$1$
$56.68921370$
1.164956165
\( \frac{185785252}{625} a^{2} - \frac{445080936}{625} a + \frac{123160356}{625} \)
\( \bigl[a + 1\) , \( -a^{2} + 2\) , \( a^{2} - 1\) , \( -414302 a^{2} - 484768 a + 190917\) , \( -262863548 a^{2} - 307573085 a + 121130448\bigr] \)
${y}^2+\left(a+1\right){x}{y}+\left(a^{2}-1\right){y}={x}^{3}+\left(-a^{2}+2\right){x}^{2}+\left(-414302a^{2}-484768a+190917\right){x}-262863548a^{2}-307573085a+121130448$
100.2-a5
100.2-a
$12$
$24$
3.3.148.1
$3$
$[3, 0]$
100.2
\( 2^{2} \cdot 5^{2} \)
\( 2^{4} \cdot 5^{10} \)
$2.34209$
$(a^2-a-2), (a^2-a-1)$
0
$\Z/2\Z\oplus\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
$2, 3$
2Cs , 3B
$1$
\( 2^{2} \)
$1$
$56.73514216$
1.165899989
\( \frac{185785252}{625} a^{2} - \frac{445080936}{625} a + \frac{123160356}{625} \)
\( \bigl[a^{2} - a - 2\) , \( a + 1\) , \( a + 1\) , \( -629720 a^{2} - 736825 a + 290185\) , \( 491951439 a^{2} + 575625731 a - 226696697\bigr] \)
${y}^2+\left(a^{2}-a-2\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-629720a^{2}-736825a+290185\right){x}+491951439a^{2}+575625731a-226696697$
400.2-e9
400.2-e
$12$
$24$
3.3.148.1
$3$
$[3, 0]$
400.2
\( 2^{4} \cdot 5^{2} \)
\( 2^{4} \cdot 5^{10} \)
$2.95084$
$(a^2-a-2), (a^2-a-1)$
$1$
$\Z/2\Z\oplus\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
$2, 3$
2Cs , 3B
$1$
\( 2^{2} \)
$0.518304394$
$75.70894508$
2.419148294
\( \frac{185785252}{625} a^{2} - \frac{445080936}{625} a + \frac{123160356}{625} \)
\( \bigl[a + 1\) , \( -a - 1\) , \( a^{2} - 1\) , \( -4622250 a^{2} - 5408432 a + 2129985\) , \( -9795739727 a^{2} - 11461862681 a + 4513985865\bigr] \)
${y}^2+\left(a+1\right){x}{y}+\left(a^{2}-1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-4622250a^{2}-5408432a+2129985\right){x}-9795739727a^{2}-11461862681a+4513985865$
Download
displayed columns for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.