Label
Class
Class size
Class degree
Base field
Field degree
Field signature
Conductor
Conductor norm
Discriminant norm
Root analytic conductor
Bad primes
Rank
Torsion
CM
CM
Sato-Tate
$\Q$-curve
Base change
Semistable
Potentially good
Nonmax $\ell$
mod-$\ell$ images
$Ш_{\textrm{an}}$
Tamagawa
Regulator
Period
Leading coeff
j-invariant
Weierstrass coefficients
Weierstrass equation
19.1-a2
19.1-a
$4$
$6$
3.3.148.1
$3$
$[3, 0]$
19.1
\( 19 \)
\( - 19^{6} \)
$1.77580$
$(-a^2-a-1)$
0
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$2, 3$
2B , 3B.1.2
$1$
\( 2 \cdot 3 \)
$1$
$5.486707401$
0.676506855
\( \frac{15636831814539296}{47045881} a^{2} - \frac{38648046941482112}{47045881} a + \frac{10231591814174352}{47045881} \)
\( \bigl[a^{2} - a - 2\) , \( -1\) , \( a\) , \( -24578 a^{2} - 28759 a + 11326\) , \( -2418130 a^{2} - 2829421 a + 1114301\bigr] \)
${y}^2+\left(a^{2}-a-2\right){x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-24578a^{2}-28759a+11326\right){x}-2418130a^{2}-2829421a+1114301$
304.1-e2
304.1-e
$4$
$6$
3.3.148.1
$3$
$[3, 0]$
304.1
\( 2^{4} \cdot 19 \)
\( - 2^{12} \cdot 19^{6} \)
$2.81891$
$(a^2-a-2), (-a^2-a-1)$
$1$
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
$2, 3$
2B , 3B
$1$
\( 2 \)
$1.580172787$
$11.35659224$
2.212651479
\( \frac{15636831814539296}{47045881} a^{2} - \frac{38648046941482112}{47045881} a + \frac{10231591814174352}{47045881} \)
\( \bigl[a^{2} - 1\) , \( a + 1\) , \( a^{2} - 1\) , \( -287 a^{2} - 316 a + 124\) , \( 2389 a^{2} + 2745 a - 1088\bigr] \)
${y}^2+\left(a^{2}-1\right){x}{y}+\left(a^{2}-1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-287a^{2}-316a+124\right){x}+2389a^{2}+2745a-1088$
361.2-c2
361.2-c
$4$
$6$
3.3.148.1
$3$
$[3, 0]$
361.2
\( 19^{2} \)
\( - 19^{12} \)
$2.90082$
$(-a^2-a-1)$
0
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
$2, 3$
2B , 3B
$9$
\( 2^{2} \)
$1$
$1.523154399$
1.126822683
\( \frac{15636831814539296}{47045881} a^{2} - \frac{38648046941482112}{47045881} a + \frac{10231591814174352}{47045881} \)
\( \bigl[a^{2} - a - 2\) , \( a - 1\) , \( a^{2} - a - 1\) , \( -44144 a^{2} - 51650 a + 20338\) , \( 5820525 a^{2} + 6810519 a - 2682165\bigr] \)
${y}^2+\left(a^{2}-a-2\right){x}{y}+\left(a^{2}-a-1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-44144a^{2}-51650a+20338\right){x}+5820525a^{2}+6810519a-2682165$
475.2-b2
475.2-b
$4$
$6$
3.3.148.1
$3$
$[3, 0]$
475.2
\( 5^{2} \cdot 19 \)
\( - 5^{6} \cdot 19^{6} \)
$3.03658$
$(a^2-a-1), (-a^2-a-1)$
$1$
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
$2, 3$
2B , 3B
$1$
\( 2^{2} \)
$0.206686216$
$41.66829336$
2.123770703
\( \frac{15636831814539296}{47045881} a^{2} - \frac{38648046941482112}{47045881} a + \frac{10231591814174352}{47045881} \)
\( \bigl[a^{2} - a - 2\) , \( -a - 1\) , \( a^{2} - a - 1\) , \( -274212 a^{2} - 320850 a + 126358\) , \( -90112799 a^{2} - 105439768 a + 41524980\bigr] \)
${y}^2+\left(a^{2}-a-2\right){x}{y}+\left(a^{2}-a-1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-274212a^{2}-320850a+126358\right){x}-90112799a^{2}-105439768a+41524980$
Download
displayed columns for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.