Label
Class
Class size
Class degree
Base field
Field degree
Field signature
Conductor
Conductor norm
Discriminant norm
Root analytic conductor
Bad primes
Rank
Torsion
CM
CM
Sato-Tate
$\Q$-curve
Base change
Semistable
Potentially good
Nonmax $\ell$
mod-$\ell$ images
$Ш_{\textrm{an}}$
Tamagawa
Regulator
Period
Leading coeff
j-invariant
Weierstrass coefficients
Weierstrass equation
20.1-a1
20.1-a
$12$
$24$
3.3.148.1
$3$
$[3, 0]$
20.1
\( 2^{2} \cdot 5 \)
\( - 2^{8} \cdot 5^{2} \)
$1.79105$
$(a^2-a-2), (a^2-a-1)$
0
$\Z/6\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
$2, 3$
2B , 3B.1.1
$1$
\( 2 \cdot 3 \)
$1$
$56.24286296$
0.770522476
\( \frac{13838352792668}{25} a^{2} - \frac{34335804621874}{25} a + \frac{9343051795654}{25} \)
\( \bigl[a^{2} - a - 2\) , \( 0\) , \( a^{2} - 1\) , \( 1292 a^{2} + 1512 a - 596\) , \( 38980968 a^{2} + 45611104 a - 17962864\bigr] \)
${y}^2+\left(a^{2}-a-2\right){x}{y}+\left(a^{2}-1\right){y}={x}^{3}+\left(1292a^{2}+1512a-596\right){x}+38980968a^{2}+45611104a-17962864$
80.1-b7
80.1-b
$12$
$24$
3.3.148.1
$3$
$[3, 0]$
80.1
\( 2^{4} \cdot 5 \)
\( - 2^{8} \cdot 5^{2} \)
$2.25658$
$(a^2-a-2), (a^2-a-1)$
0
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
$2, 3$
2B , 3B
$4$
\( 2 \)
$1$
$7.086151713$
1.164956165
\( \frac{13838352792668}{25} a^{2} - \frac{34335804621874}{25} a + \frac{9343051795654}{25} \)
\( \bigl[a + 1\) , \( -a^{2} + 2\) , \( a^{2} - 1\) , \( 9483 a^{2} + 11097 a - 4368\) , \( -775196971 a^{2} - 907047500 a + 357219390\bigr] \)
${y}^2+\left(a+1\right){x}{y}+\left(a^{2}-1\right){y}={x}^{3}+\left(-a^{2}+2\right){x}^{2}+\left(9483a^{2}+11097a-4368\right){x}-775196971a^{2}-907047500a+357219390$
100.2-a3
100.2-a
$12$
$24$
3.3.148.1
$3$
$[3, 0]$
100.2
\( 2^{2} \cdot 5^{2} \)
\( - 2^{8} \cdot 5^{8} \)
$2.34209$
$(a^2-a-2), (a^2-a-1)$
0
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
$2, 3$
2B , 3B
$1$
\( 2^{2} \)
$1$
$14.18378554$
1.165899989
\( \frac{13838352792668}{25} a^{2} - \frac{34335804621874}{25} a + \frac{9343051795654}{25} \)
\( \bigl[a^{2} - a - 2\) , \( a + 1\) , \( a + 1\) , \( 14415 a^{2} + 16870 a - 6640\) , \( 1452659431 a^{2} + 1699737171 a - 669401630\bigr] \)
${y}^2+\left(a^{2}-a-2\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(14415a^{2}+16870a-6640\right){x}+1452659431a^{2}+1699737171a-669401630$
400.2-e7
400.2-e
$12$
$24$
3.3.148.1
$3$
$[3, 0]$
400.2
\( 2^{4} \cdot 5^{2} \)
\( - 2^{8} \cdot 5^{8} \)
$2.95084$
$(a^2-a-2), (a^2-a-1)$
$1$
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
$2, 3$
2B , 3B
$1$
\( 2^{2} \)
$0.259152197$
$37.85447254$
2.419148294
\( \frac{13838352792668}{25} a^{2} - \frac{34335804621874}{25} a + \frac{9343051795654}{25} \)
\( \bigl[a + 1\) , \( -a - 1\) , \( a^{2} - 1\) , \( 105815 a^{2} + 123813 a - 48760\) , \( -28888097400 a^{2} - 33801572392 a + 13311956725\bigr] \)
${y}^2+\left(a+1\right){x}{y}+\left(a^{2}-1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(105815a^{2}+123813a-48760\right){x}-28888097400a^{2}-33801572392a+13311956725$
Download
displayed columns for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.