Label
Class
Class size
Class degree
Base field
Field degree
Field signature
Conductor
Conductor norm
Discriminant norm
Root analytic conductor
Bad primes
Rank
Torsion
CM
CM
Sato-Tate
$\Q$-curve
Base change
Semistable
Potentially good
Nonmax $\ell$
mod-$\ell$ images
$Ш_{\textrm{an}}$
Tamagawa
Regulator
Period
Leading coeff
j-invariant
Weierstrass coefficients
Weierstrass equation
19.1-a3
19.1-a
$4$
$6$
3.3.148.1
$3$
$[3, 0]$
19.1
\( 19 \)
\( - 19^{3} \)
$1.77580$
$(-a^2-a-1)$
0
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$2, 3$
2B , 3B.1.2
$1$
\( 3 \)
$1$
$10.97341480$
0.676506855
\( -\frac{72241514230136832}{6859} a^{2} + \frac{49766614320668672}{6859} a + \frac{232207325676879872}{6859} \)
\( \bigl[0\) , \( -a^{2} + 2\) , \( a^{2} - a - 1\) , \( 20 a^{2} - 9 a - 70\) , \( 81 a^{2} - 52 a - 273\bigr] \)
${y}^2+\left(a^{2}-a-1\right){y}={x}^{3}+\left(-a^{2}+2\right){x}^{2}+\left(20a^{2}-9a-70\right){x}+81a^{2}-52a-273$
304.1-e3
304.1-e
$4$
$6$
3.3.148.1
$3$
$[3, 0]$
304.1
\( 2^{4} \cdot 19 \)
\( - 2^{12} \cdot 19^{3} \)
$2.81891$
$(a^2-a-2), (-a^2-a-1)$
$1$
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
$2, 3$
2B , 3B
$1$
\( 1 \)
$3.160345575$
$11.35659224$
2.212651479
\( -\frac{72241514230136832}{6859} a^{2} + \frac{49766614320668672}{6859} a + \frac{232207325676879872}{6859} \)
\( \bigl[0\) , \( a^{2} - a - 2\) , \( 0\) , \( 19 a^{2} - 59\) , \( 51 a^{2} - 24 a - 128\bigr] \)
${y}^2={x}^{3}+\left(a^{2}-a-2\right){x}^{2}+\left(19a^{2}-59\right){x}+51a^{2}-24a-128$
361.2-c3
361.2-c
$4$
$6$
3.3.148.1
$3$
$[3, 0]$
361.2
\( 19^{2} \)
\( - 19^{9} \)
$2.90082$
$(-a^2-a-1)$
0
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
$2, 3$
2B , 3B
$9$
\( 2 \)
$1$
$3.046308799$
1.126822683
\( -\frac{72241514230136832}{6859} a^{2} + \frac{49766614320668672}{6859} a + \frac{232207325676879872}{6859} \)
\( \bigl[0\) , \( -a^{2} + 2 a + 1\) , \( a\) , \( 54 a^{2} + 87 a - 439\) , \( 548 a^{2} + 456 a - 3568\bigr] \)
${y}^2+a{y}={x}^{3}+\left(-a^{2}+2a+1\right){x}^{2}+\left(54a^{2}+87a-439\right){x}+548a^{2}+456a-3568$
475.2-b3
475.2-b
$4$
$6$
3.3.148.1
$3$
$[3, 0]$
475.2
\( 5^{2} \cdot 19 \)
\( - 5^{6} \cdot 19^{3} \)
$3.03658$
$(a^2-a-1), (-a^2-a-1)$
$1$
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
$2, 3$
2B , 3B
$1$
\( 2 \)
$0.413372433$
$41.66829336$
2.123770703
\( -\frac{72241514230136832}{6859} a^{2} + \frac{49766614320668672}{6859} a + \frac{232207325676879872}{6859} \)
\( \bigl[0\) , \( -a^{2} + a + 3\) , \( a\) , \( -25 a^{2} + 79 a - 29\) , \( 165 a^{2} - 431 a + 121\bigr] \)
${y}^2+a{y}={x}^{3}+\left(-a^{2}+a+3\right){x}^{2}+\left(-25a^{2}+79a-29\right){x}+165a^{2}-431a+121$
Download
displayed columns for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.