Label
Class
Class size
Class degree
Base field
Field degree
Field signature
Conductor
Conductor norm
Discriminant norm
Root analytic conductor
Bad primes
Rank
Torsion
CM
CM
Sato-Tate
$\Q$-curve
Base change
Semistable
Potentially good
Nonmax $\ell$
mod-$\ell$ images
$Ш_{\textrm{an}}$
Tamagawa
Regulator
Period
Leading coeff
j-invariant
Weierstrass coefficients
Weierstrass equation
19.1-a4
19.1-a
$4$
$6$
3.3.148.1
$3$
$[3, 0]$
19.1
\( 19 \)
\( -19 \)
$1.77580$
$(-a^2-a-1)$
0
$\Z/6\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$2, 3$
2B , 3B.1.1
$1$
\( 1 \)
$1$
$296.2821996$
0.676506855
\( -\frac{16384}{19} a^{2} - \frac{319488}{19} a + \frac{737280}{19} \)
\( \bigl[0\) , \( -a^{2} + 2\) , \( a^{2} - a - 1\) , \( a\) , \( -1\bigr] \)
${y}^2+\left(a^{2}-a-1\right){y}={x}^{3}+\left(-a^{2}+2\right){x}^{2}+a{x}-1$
304.1-e4
304.1-e
$4$
$6$
3.3.148.1
$3$
$[3, 0]$
304.1
\( 2^{4} \cdot 19 \)
\( - 2^{12} \cdot 19 \)
$2.81891$
$(a^2-a-2), (-a^2-a-1)$
$1$
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
$2, 3$
2B , 3B
$1$
\( 1 \)
$1.053448525$
$34.06977672$
2.212651479
\( -\frac{16384}{19} a^{2} - \frac{319488}{19} a + \frac{737280}{19} \)
\( \bigl[0\) , \( a^{2} - a - 2\) , \( 0\) , \( -a^{2} + 1\) , \( -a^{2}\bigr] \)
${y}^2={x}^{3}+\left(a^{2}-a-2\right){x}^{2}+\left(-a^{2}+1\right){x}-a^{2}$
361.2-c4
361.2-c
$4$
$6$
3.3.148.1
$3$
$[3, 0]$
361.2
\( 19^{2} \)
\( - 19^{7} \)
$2.90082$
$(-a^2-a-1)$
0
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
$2, 3$
2B , 3B
$1$
\( 2 \)
$1$
$27.41677919$
1.126822683
\( -\frac{16384}{19} a^{2} - \frac{319488}{19} a + \frac{737280}{19} \)
\( \bigl[0\) , \( -a^{2} + 2 a + 1\) , \( a\) , \( -6 a^{2} + 17 a - 9\) , \( 35 a^{2} - 84 a + 16\bigr] \)
${y}^2+a{y}={x}^{3}+\left(-a^{2}+2a+1\right){x}^{2}+\left(-6a^{2}+17a-9\right){x}+35a^{2}-84a+16$
475.2-b4
475.2-b
$4$
$6$
3.3.148.1
$3$
$[3, 0]$
475.2
\( 5^{2} \cdot 19 \)
\( - 5^{6} \cdot 19 \)
$3.03658$
$(a^2-a-1), (-a^2-a-1)$
$1$
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
$2, 3$
2B , 3B
$1$
\( 2 \)
$0.137790811$
$125.0048800$
2.123770703
\( -\frac{16384}{19} a^{2} - \frac{319488}{19} a + \frac{737280}{19} \)
\( \bigl[0\) , \( -a^{2} + a + 3\) , \( a\) , \( -5 a^{2} + 9 a + 1\) , \( -6 a^{2} + 15 a - 3\bigr] \)
${y}^2+a{y}={x}^{3}+\left(-a^{2}+a+3\right){x}^{2}+\left(-5a^{2}+9a+1\right){x}-6a^{2}+15a-3$
Download
displayed columns for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.