Learn more

Refine search


Results (4 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
19.1-a4 19.1-a 3.3.148.1 \( 19 \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $296.2821996$ 0.676506855 \( -\frac{16384}{19} a^{2} - \frac{319488}{19} a + \frac{737280}{19} \) \( \bigl[0\) , \( -a^{2} + 2\) , \( a^{2} - a - 1\) , \( a\) , \( -1\bigr] \) ${y}^2+\left(a^{2}-a-1\right){y}={x}^{3}+\left(-a^{2}+2\right){x}^{2}+a{x}-1$
304.1-e4 304.1-e 3.3.148.1 \( 2^{4} \cdot 19 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.053448525$ $34.06977672$ 2.212651479 \( -\frac{16384}{19} a^{2} - \frac{319488}{19} a + \frac{737280}{19} \) \( \bigl[0\) , \( a^{2} - a - 2\) , \( 0\) , \( -a^{2} + 1\) , \( -a^{2}\bigr] \) ${y}^2={x}^{3}+\left(a^{2}-a-2\right){x}^{2}+\left(-a^{2}+1\right){x}-a^{2}$
361.2-c4 361.2-c 3.3.148.1 \( 19^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $27.41677919$ 1.126822683 \( -\frac{16384}{19} a^{2} - \frac{319488}{19} a + \frac{737280}{19} \) \( \bigl[0\) , \( -a^{2} + 2 a + 1\) , \( a\) , \( -6 a^{2} + 17 a - 9\) , \( 35 a^{2} - 84 a + 16\bigr] \) ${y}^2+a{y}={x}^{3}+\left(-a^{2}+2a+1\right){x}^{2}+\left(-6a^{2}+17a-9\right){x}+35a^{2}-84a+16$
475.2-b4 475.2-b 3.3.148.1 \( 5^{2} \cdot 19 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.137790811$ $125.0048800$ 2.123770703 \( -\frac{16384}{19} a^{2} - \frac{319488}{19} a + \frac{737280}{19} \) \( \bigl[0\) , \( -a^{2} + a + 3\) , \( a\) , \( -5 a^{2} + 9 a + 1\) , \( -6 a^{2} + 15 a - 3\bigr] \) ${y}^2+a{y}={x}^{3}+\left(-a^{2}+a+3\right){x}^{2}+\left(-5a^{2}+9a+1\right){x}-6a^{2}+15a-3$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.