Learn more

Refine search


Results (6 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
8.1-a4 8.1-a 3.3.148.1 \( 2^{3} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $55.79706605$ 0.573311322 \( -10821604 a^{2} + 6316064 a + 37257972 \) \( \bigl[a + 1\) , \( a^{2} - 2 a - 1\) , \( a^{2} - a - 2\) , \( -83347907948 a^{2} - 97524260781 a + 38407643413\) , \( -13188165606368355 a^{2} - 15431294359397846 a + 6077253458627265\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a^{2}-a-2\right){y}={x}^{3}+\left(a^{2}-2a-1\right){x}^{2}+\left(-83347907948a^{2}-97524260781a+38407643413\right){x}-13188165606368355a^{2}-15431294359397846a+6077253458627265$
16.1-a2 16.1-a 3.3.148.1 \( 2^{4} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $158.7523358$ 0.815585101 \( -10821604 a^{2} + 6316064 a + 37257972 \) \( \bigl[a^{2} - a - 2\) , \( a^{2} - 2 a - 3\) , \( a^{2} - 1\) , \( -16 a^{2} - 19 a + 8\) , \( 49 a^{2} + 57 a - 23\bigr] \) ${y}^2+\left(a^{2}-a-2\right){x}{y}+\left(a^{2}-1\right){y}={x}^{3}+\left(a^{2}-2a-3\right){x}^{2}+\left(-16a^{2}-19a+8\right){x}+49a^{2}+57a-23$
200.2-d4 200.2-d 3.3.148.1 \( 2^{3} \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.093636490$ $168.1773413$ 1.941659237 \( -10821604 a^{2} + 6316064 a + 37257972 \) \( \bigl[a^{2} - a - 2\) , \( 0\) , \( 0\) , \( -10 a^{2} + 21 a - 6\) , \( 24 a^{2} - 62 a + 17\bigr] \) ${y}^2+\left(a^{2}-a-2\right){x}{y}={x}^{3}+\left(-10a^{2}+21a-6\right){x}+24a^{2}-62a+17$
256.1-b4 256.1-b 3.3.148.1 \( 2^{8} \) 0 $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $220.5448617$ 1.133042247 \( -10821604 a^{2} + 6316064 a + 37257972 \) \( \bigl[a^{2} - 1\) , \( 0\) , \( 0\) , \( -5895730 a^{2} - 6898514 a + 2716818\) , \( 7839217703 a^{2} + 9172562700 a - 3612398746\bigr] \) ${y}^2+\left(a^{2}-1\right){x}{y}={x}^{3}+\left(-5895730a^{2}-6898514a+2716818\right){x}+7839217703a^{2}+9172562700a-3612398746$
256.1-e1 256.1-e 3.3.148.1 \( 2^{8} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $77.51543401$ 1.592932356 \( -10821604 a^{2} + 6316064 a + 37257972 \) \( \bigl[a^{2} - 1\) , \( a^{2} - 2 a - 2\) , \( 0\) , \( -43275682 a^{2} - 50636292 a + 19941918\) , \( -156055514429 a^{2} - 182598448598 a + 71912117508\bigr] \) ${y}^2+\left(a^{2}-1\right){x}{y}={x}^{3}+\left(a^{2}-2a-2\right){x}^{2}+\left(-43275682a^{2}-50636292a+19941918\right){x}-156055514429a^{2}-182598448598a+71912117508$
400.2-a4 400.2-a 3.3.148.1 \( 2^{4} \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $81.32192145$ 1.671155191 \( -10821604 a^{2} + 6316064 a + 37257972 \) \( \bigl[a + 1\) , \( -a^{2} + 2\) , \( 0\) , \( -8 a^{2} - 9 a + 2\) , \( 13 a^{2} + 16 a - 6\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a^{2}+2\right){x}^{2}+\left(-8a^{2}-9a+2\right){x}+13a^{2}+16a-6$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.