Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
8.1-a4 |
8.1-a |
$6$ |
$8$ |
3.3.148.1 |
$3$ |
$[3, 0]$ |
8.1 |
\( 2^{3} \) |
\( 2^{4} \) |
$1.53739$ |
$(a^2-a-2)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
✓ |
$2$ |
2Cs |
$1$ |
\( 2 \) |
$1$ |
$55.79706605$ |
0.573311322 |
\( -10821604 a^{2} + 6316064 a + 37257972 \) |
\( \bigl[a + 1\) , \( a^{2} - 2 a - 1\) , \( a^{2} - a - 2\) , \( -83347907948 a^{2} - 97524260781 a + 38407643413\) , \( -13188165606368355 a^{2} - 15431294359397846 a + 6077253458627265\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a^{2}-a-2\right){y}={x}^{3}+\left(a^{2}-2a-1\right){x}^{2}+\left(-83347907948a^{2}-97524260781a+38407643413\right){x}-13188165606368355a^{2}-15431294359397846a+6077253458627265$ |
16.1-a2 |
16.1-a |
$6$ |
$8$ |
3.3.148.1 |
$3$ |
$[3, 0]$ |
16.1 |
\( 2^{4} \) |
\( 2^{4} \) |
$1.72566$ |
$(a^2-a-2)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
✓ |
$2$ |
2Cs |
$1$ |
\( 1 \) |
$1$ |
$158.7523358$ |
0.815585101 |
\( -10821604 a^{2} + 6316064 a + 37257972 \) |
\( \bigl[a^{2} - a - 2\) , \( a^{2} - 2 a - 3\) , \( a^{2} - 1\) , \( -16 a^{2} - 19 a + 8\) , \( 49 a^{2} + 57 a - 23\bigr] \) |
${y}^2+\left(a^{2}-a-2\right){x}{y}+\left(a^{2}-1\right){y}={x}^{3}+\left(a^{2}-2a-3\right){x}^{2}+\left(-16a^{2}-19a+8\right){x}+49a^{2}+57a-23$ |
200.2-d4 |
200.2-d |
$6$ |
$8$ |
3.3.148.1 |
$3$ |
$[3, 0]$ |
200.2 |
\( 2^{3} \cdot 5^{2} \) |
\( 2^{4} \cdot 5^{6} \) |
$2.62890$ |
$(a^2-a-2), (a^2-a-1)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
✓ |
$2$ |
2Cs |
$1$ |
\( 2^{3} \) |
$0.093636490$ |
$168.1773413$ |
1.941659237 |
\( -10821604 a^{2} + 6316064 a + 37257972 \) |
\( \bigl[a^{2} - a - 2\) , \( 0\) , \( 0\) , \( -10 a^{2} + 21 a - 6\) , \( 24 a^{2} - 62 a + 17\bigr] \) |
${y}^2+\left(a^{2}-a-2\right){x}{y}={x}^{3}+\left(-10a^{2}+21a-6\right){x}+24a^{2}-62a+17$ |
256.1-b4 |
256.1-b |
$6$ |
$8$ |
3.3.148.1 |
$3$ |
$[3, 0]$ |
256.1 |
\( 2^{8} \) |
\( 2^{16} \) |
$2.73932$ |
$(a^2-a-2)$ |
0 |
$\Z/2\Z\oplus\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
✓ |
$2$ |
2Cs |
$1$ |
\( 2^{2} \) |
$1$ |
$220.5448617$ |
1.133042247 |
\( -10821604 a^{2} + 6316064 a + 37257972 \) |
\( \bigl[a^{2} - 1\) , \( 0\) , \( 0\) , \( -5895730 a^{2} - 6898514 a + 2716818\) , \( 7839217703 a^{2} + 9172562700 a - 3612398746\bigr] \) |
${y}^2+\left(a^{2}-1\right){x}{y}={x}^{3}+\left(-5895730a^{2}-6898514a+2716818\right){x}+7839217703a^{2}+9172562700a-3612398746$ |
256.1-e1 |
256.1-e |
$6$ |
$8$ |
3.3.148.1 |
$3$ |
$[3, 0]$ |
256.1 |
\( 2^{8} \) |
\( 2^{16} \) |
$2.73932$ |
$(a^2-a-2)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
✓ |
$2$ |
2Cs |
$1$ |
\( 2^{2} \) |
$1$ |
$77.51543401$ |
1.592932356 |
\( -10821604 a^{2} + 6316064 a + 37257972 \) |
\( \bigl[a^{2} - 1\) , \( a^{2} - 2 a - 2\) , \( 0\) , \( -43275682 a^{2} - 50636292 a + 19941918\) , \( -156055514429 a^{2} - 182598448598 a + 71912117508\bigr] \) |
${y}^2+\left(a^{2}-1\right){x}{y}={x}^{3}+\left(a^{2}-2a-2\right){x}^{2}+\left(-43275682a^{2}-50636292a+19941918\right){x}-156055514429a^{2}-182598448598a+71912117508$ |
400.2-a4 |
400.2-a |
$6$ |
$8$ |
3.3.148.1 |
$3$ |
$[3, 0]$ |
400.2 |
\( 2^{4} \cdot 5^{2} \) |
\( 2^{4} \cdot 5^{6} \) |
$2.95084$ |
$(a^2-a-2), (a^2-a-1)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
✓ |
$2$ |
2Cs |
$1$ |
\( 2^{2} \) |
$1$ |
$81.32192145$ |
1.671155191 |
\( -10821604 a^{2} + 6316064 a + 37257972 \) |
\( \bigl[a + 1\) , \( -a^{2} + 2\) , \( 0\) , \( -8 a^{2} - 9 a + 2\) , \( 13 a^{2} + 16 a - 6\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a^{2}+2\right){x}^{2}+\left(-8a^{2}-9a+2\right){x}+13a^{2}+16a-6$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.