Learn more

Refine search


Results (displaying both matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
253.1-A4 253.1-A 3.1.23.1 \( 11 \cdot 23 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $10.09699607$ 0.526342305 \( -\frac{174588745152190}{2783} a^{2} - \frac{130042620481635}{2783} a + \frac{1327777229138}{2783} \) \( \bigl[a^{2} + a\) , \( -a\) , \( a^{2} + 1\) , \( 174 a^{2} - 85 a - 169\) , \( 1133 a^{2} - 241 a - 824\bigr] \) ${y}^2+\left(a^{2}+a\right){x}{y}+\left(a^{2}+1\right){y}={x}^{3}-a{x}^{2}+\left(174a^{2}-85a-169\right){x}+1133a^{2}-241a-824$
5819.3-A3 5819.3-A 3.1.23.1 \( 11 \cdot 23^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.903615520$ 1.507334885 \( -\frac{174588745152190}{2783} a^{2} - \frac{130042620481635}{2783} a + \frac{1327777229138}{2783} \) \( \bigl[a^{2} + 1\) , \( -a^{2} + a\) , \( a^{2} + 1\) , \( -743 a^{2} - 559 a - 91\) , \( 16358 a^{2} + 3009 a - 7365\bigr] \) ${y}^2+\left(a^{2}+1\right){x}{y}+\left(a^{2}+1\right){y}={x}^{3}+\left(-a^{2}+a\right){x}^{2}+\left(-743a^{2}-559a-91\right){x}+16358a^{2}+3009a-7365$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.