Label
Class
Class size
Class degree
Base field
Field degree
Field signature
Conductor
Conductor norm
Discriminant norm
Root analytic conductor
Bad primes
Rank
Torsion
CM
CM
Sato-Tate
$\Q$-curve
Base change
Semistable
Potentially good
Nonmax $\ell$
mod-$\ell$ images
$Ш_{\textrm{an}}$
Tamagawa
Regulator
Period
Leading coeff
j-invariant
Weierstrass coefficients
Weierstrass equation
107.1-A2
107.1-A
$3$
$9$
3.1.23.1
$3$
$[1, 1]$
107.1
\( 107 \)
\( - 107^{3} \)
$0.93376$
$(5a^2-3a)$
0
$\Z/3\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$3$
3Cs.1.1
$1$
\( 1 \)
$1$
$8.012982497$
0.371293855
\( -\frac{13431610740736}{1225043} a^{2} - \frac{34043228901376}{1225043} a - \frac{18044231077888}{1225043} \)
\( \bigl[0\) , \( a^{2} - a + 1\) , \( a^{2} + a\) , \( -30 a^{2} - 11 a + 11\) , \( -101 a^{2} + 29 a + 80\bigr] \)
${y}^2+\left(a^{2}+a\right){y}={x}^{3}+\left(a^{2}-a+1\right){x}^{2}+\left(-30a^{2}-11a+11\right){x}-101a^{2}+29a+80$
11449.2-A2
11449.2-A
$3$
$9$
3.1.23.1
$3$
$[1, 1]$
11449.2
\( 107^{2} \)
\( - 107^{9} \)
$2.03453$
$(5a^2-3a)$
$1$
$\mathsf{trivial}$
$\textsf{no}$
$\mathrm{SU}(2)$
$3$
3Cs
$1$
\( 2^{2} \)
$0.354990366$
$1.074326574$
1.908535357
\( -\frac{13431610740736}{1225043} a^{2} - \frac{34043228901376}{1225043} a - \frac{18044231077888}{1225043} \)
\( \bigl[0\) , \( a^{2} - a\) , \( a\) , \( 742 a^{2} - 186 a - 552\) , \( 8443 a^{2} + 1063 a - 3975\bigr] \)
${y}^2+a{y}={x}^{3}+\left(a^{2}-a\right){x}^{2}+\left(742a^{2}-186a-552\right){x}+8443a^{2}+1063a-3975$
Download
displayed columns for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.