Learn more

Refine search


Results (4 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
1152.1-a1 1152.1-a \(\Q(\sqrt{2}) \) \( 2^{7} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.370855344$ $8.585176139$ 2.251327905 \( \frac{4000}{9} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -4 a + 6\) , \( -10 a + 14\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-4a+6\right){x}-10a+14$
1152.1-d1 1152.1-d \(\Q(\sqrt{2}) \) \( 2^{7} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.370855344$ $8.585176139$ 2.251327905 \( \frac{4000}{9} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 4 a + 6\) , \( 10 a + 14\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(4a+6\right){x}+10a+14$
2304.1-b1 2304.1-b \(\Q(\sqrt{2}) \) \( 2^{8} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.319732820$ $11.50728806$ 2.601628048 \( \frac{4000}{9} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 2\) , \( 2\bigr] \) ${y}^2={x}^{3}+{x}^{2}+2{x}+2$
2304.1-n1 2304.1-n \(\Q(\sqrt{2}) \) \( 2^{8} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $6.405092923$ 2.264542320 \( \frac{4000}{9} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 2\) , \( -2\bigr] \) ${y}^2={x}^{3}-{x}^{2}+2{x}-2$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.