Label
Class
Class size
Class degree
Base field
Field degree
Field signature
Conductor
Conductor norm
Discriminant norm
Root analytic conductor
Bad primes
Rank
Torsion
CM
CM
Sato-Tate
$\Q$-curve
Base change
Semistable
Potentially good
Nonmax $\ell$
mod-$\ell$ images
$Ш_{\textrm{an}}$
Tamagawa
Regulator
Period
Leading coeff
j-invariant
Weierstrass coefficients
Weierstrass equation
98.1-a9
98.1-a
$12$
$36$
\(\Q(\sqrt{2}) \)
$2$
$[2, 0]$
98.1
\( 2 \cdot 7^{2} \)
\( 2^{3} \cdot 7^{15} \)
$0.79523$
$(a), (-2a+1), (2a+1)$
0
$\Z/6\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
✓
$2, 3$
2B , 3Cs.1.1
$1$
\( 2^{2} \cdot 3^{2} \)
$1$
$1.962857973$
0.693975091
\( \frac{392127492092318125}{55365148804} a + \frac{138814532776321000}{13841287201} \)
\( \bigl[1\) , \( 0\) , \( 1\) , \( -130 a - 356\) , \( -2000 a - 2038\bigr] \)
${y}^2+{x}{y}+{y}={x}^{3}+\left(-130a-356\right){x}-2000a-2038$
686.1-d9
686.1-d
$12$
$36$
\(\Q(\sqrt{2}) \)
$2$
$[2, 0]$
686.1
\( 2 \cdot 7^{3} \)
\( 2^{3} \cdot 7^{21} \)
$1.29349$
$(a), (-2a+1), (2a+1)$
0
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$2, 3$
2B , 3Cs
$1$
\( 2^{2} \cdot 3 \)
$1$
$1.985259457$
2.105685636
\( \frac{392127492092318125}{55365148804} a + \frac{138814532776321000}{13841287201} \)
\( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( -2593 a - 4241\) , \( 94830 a + 138943\bigr] \)
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-2593a-4241\right){x}+94830a+138943$
686.2-d9
686.2-d
$12$
$36$
\(\Q(\sqrt{2}) \)
$2$
$[2, 0]$
686.2
\( 2 \cdot 7^{3} \)
\( 2^{3} \cdot 7^{21} \)
$1.29349$
$(a), (-2a+1), (2a+1)$
0
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$2, 3$
2B , 3Cs
$4$
\( 2^{2} \cdot 3 \)
$1$
$0.496314864$
2.105685636
\( \frac{392127492092318125}{55365148804} a + \frac{138814532776321000}{13841287201} \)
\( \bigl[a + 1\) , \( -1\) , \( a + 1\) , \( 251 a - 2161\) , \( 5169 a - 37057\bigr] \)
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(251a-2161\right){x}+5169a-37057$
784.1-a9
784.1-a
$12$
$36$
\(\Q(\sqrt{2}) \)
$2$
$[2, 0]$
784.1
\( 2^{4} \cdot 7^{2} \)
\( 2^{15} \cdot 7^{15} \)
$1.33740$
$(a), (-2a+1), (2a+1)$
0
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$2, 3$
2B , 3Cs
$1$
\( 2^{3} \)
$1$
$1.756927026$
1.242335014
\( \frac{392127492092318125}{55365148804} a + \frac{138814532776321000}{13841287201} \)
\( \bigl[a\) , \( -1\) , \( 0\) , \( -520 a - 1422\) , \( 16000 a + 16302\bigr] \)
${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(-520a-1422\right){x}+16000a+16302$
4802.1-z9
4802.1-z
$12$
$36$
\(\Q(\sqrt{2}) \)
$2$
$[2, 0]$
4802.1
\( 2 \cdot 7^{4} \)
\( 2^{3} \cdot 7^{27} \)
$2.10397$
$(a), (-2a+1), (2a+1)$
0
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$2, 3$
2B , 3Cs
$1$
\( 2^{4} \)
$1$
$0.501979150$
0.709905722
\( \frac{392127492092318125}{55365148804} a + \frac{138814532776321000}{13841287201} \)
\( \bigl[1\) , \( 1\) , \( 0\) , \( -6370 a - 17420\) , \( 679630 a + 681528\bigr] \)
${y}^2+{x}{y}={x}^{3}+{x}^{2}+\left(-6370a-17420\right){x}+679630a+681528$
Download
displayed columns for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.