Label
Class
Class size
Class degree
Base field
Field degree
Field signature
Conductor
Conductor norm
Discriminant norm
Root analytic conductor
Bad primes
Rank
Torsion
CM
CM
Sato-Tate
$\Q$-curve
Base change
Semistable
Potentially good
Nonmax $\ell$
mod-$\ell$ images
$Ш_{\textrm{an}}$
Tamagawa
Regulator
Period
Leading coeff
j-invariant
Weierstrass coefficients
Weierstrass equation
171.1-c1
171.1-c
$1$
$1$
\(\Q(\sqrt{19}) \)
$2$
$[2, 0]$
171.1
\( 3^{2} \cdot 19 \)
\( 3^{13} \cdot 19 \)
$2.81705$
$(-a-4), (-a+4), (a)$
$1$
$\mathsf{trivial}$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$1$
\( 2 \)
$1.660744489$
$3.604998134$
2.747015182
\( \frac{12364905437067631}{124659} a - \frac{2836704000281954}{6561} \)
\( \bigl[1\) , \( 1\) , \( a\) , \( 659571 a - 2875005\) , \( -608482693 a + 2652314563\bigr] \)
${y}^2+{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(659571a-2875005\right){x}-608482693a+2652314563$
171.1-g1
171.1-g
$1$
$1$
\(\Q(\sqrt{19}) \)
$2$
$[2, 0]$
171.1
\( 3^{2} \cdot 19 \)
\( 3^{13} \cdot 19 \)
$2.81705$
$(-a-4), (-a+4), (a)$
0
$\mathsf{trivial}$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$1$
\( 2^{3} \cdot 5 \)
$1$
$1.316496682$
6.040501053
\( \frac{12364905437067631}{124659} a - \frac{2836704000281954}{6561} \)
\( \bigl[a\) , \( 0\) , \( 1\) , \( 659571 a - 2874998\) , \( 609801836 a - 2658064575\bigr] \)
${y}^2+a{x}{y}+{y}={x}^{3}+\left(659571a-2874998\right){x}+609801836a-2658064575$
Download
displayed columns for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.