Learn more

Refine search


Results (4 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
75.1-a7 75.1-a \(\Q(\sqrt{57}) \) \( 3 \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.547989231$ 2.699915346 \( \frac{56667352321}{15} \) \( \bigl[1\) , \( a + 1\) , \( a\) , \( -966651 a - 3165699\) , \( -1006909063 a - 3297543830\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-966651a-3165699\right){x}-1006909063a-3297543830$
75.1-b7 75.1-b \(\Q(\sqrt{57}) \) \( 3 \cdot 5^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $1.027768762$ $31.38702211$ 1.068189016 \( \frac{56667352321}{15} \) \( \bigl[1\) , \( 1\) , \( 1\) , \( -80\) , \( 242\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-80{x}+242$
225.1-a7 225.1-a \(\Q(\sqrt{57}) \) \( 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $4.027707458$ $5.163131942$ 2.754442525 \( \frac{56667352321}{15} \) \( \bigl[1\) , \( -a + 1\) , \( 0\) , \( -9603 a - 31443\) , \( 1004859 a + 3290832\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-9603a-31443\right){x}+1004859a+3290832$
225.1-b7 225.1-b \(\Q(\sqrt{57}) \) \( 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $4.027707458$ $5.163131942$ 2.754442525 \( \frac{56667352321}{15} \) \( \bigl[1\) , \( a\) , \( 0\) , \( 9603 a - 41046\) , \( -1004859 a + 4295691\bigr] \) ${y}^2+{x}{y}={x}^{3}+a{x}^{2}+\left(9603a-41046\right){x}-1004859a+4295691$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.