Learn more

Refine search


Results (4 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
75.1-a3 75.1-a \(\Q(\sqrt{57}) \) \( 3 \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.547989231$ 2.699915346 \( \frac{4733169839}{3515625} \) \( \bigl[1\) , \( a + 1\) , \( a\) , \( 422549 a + 1383816\) , \( 155447492 a + 509077665\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(422549a+1383816\right){x}+155447492a+509077665$
75.1-b3 75.1-b \(\Q(\sqrt{57}) \) \( 3 \cdot 5^{2} \) $1$ $\Z/8\Z$ $\mathrm{SU}(2)$ $8.222150098$ $1.961688882$ 1.068189016 \( \frac{4733169839}{3515625} \) \( \bigl[1\) , \( 1\) , \( 1\) , \( 35\) , \( -28\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}+35{x}-28$
225.1-a3 225.1-a \(\Q(\sqrt{57}) \) \( 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $8.055414916$ $1.290782985$ 2.754442525 \( \frac{4733169839}{3515625} \) \( \bigl[1\) , \( -a + 1\) , \( 0\) , \( 4197 a + 13752\) , \( -157371 a - 515373\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(4197a+13752\right){x}-157371a-515373$
225.1-b3 225.1-b \(\Q(\sqrt{57}) \) \( 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $8.055414916$ $1.290782985$ 2.754442525 \( \frac{4733169839}{3515625} \) \( \bigl[1\) , \( a\) , \( 0\) , \( -4197 a + 17949\) , \( 157371 a - 672744\bigr] \) ${y}^2+{x}{y}={x}^{3}+a{x}^{2}+\left(-4197a+17949\right){x}+157371a-672744$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.