Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
228.1-h4 |
228.1-h |
$8$ |
$12$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
228.1 |
\( 2^{2} \cdot 3 \cdot 19 \) |
\( 2^{5} \cdot 3 \cdot 19^{3} \) |
$2.62156$ |
$(a-4), (a+3), (4a+13), (10a-43)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2B, 3B.1.2 |
$9$ |
\( 2^{2} \cdot 3 \) |
$1$ |
$1.101709640$ |
3.939975182 |
\( -\frac{25477549476528524375}{17328} a + \frac{108914414920560011125}{17328} \) |
\( \bigl[1\) , \( a + 1\) , \( a + 1\) , \( -10156 a - 33260\) , \( -1012867 a - 3317057\bigr] \) |
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-10156a-33260\right){x}-1012867a-3317057$ |
228.1-s4 |
228.1-s |
$8$ |
$12$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
228.1 |
\( 2^{2} \cdot 3 \cdot 19 \) |
\( 2^{5} \cdot 3 \cdot 19^{3} \) |
$2.62156$ |
$(a-4), (a+3), (4a+13), (10a-43)$ |
$1$ |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2B, 3B.1.1 |
$1$ |
\( 2 \cdot 3 \) |
$2.129702711$ |
$9.523070670$ |
0.895441686 |
\( -\frac{25477549476528524375}{17328} a + \frac{108914414920560011125}{17328} \) |
\( \bigl[1\) , \( 1\) , \( 0\) , \( 29535 a - 126260\) , \( -5355845 a + 22895794\bigr] \) |
${y}^2+{x}{y}={x}^{3}+{x}^{2}+\left(29535a-126260\right){x}-5355845a+22895794$ |
Download to
Pari/GP
SageMath
Magma
Oscar
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.