Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
49.1-a2 |
49.1-a |
$2$ |
$5$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
49.1 |
\( 7^{2} \) |
\( 7^{2} \) |
$0.52866$ |
$(7)$ |
$0$ |
$\Z/5\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$5$ |
5B.1.1[2] |
$1$ |
\( 1 \) |
$1$ |
$26.13620482$ |
0.467538645 |
\( \frac{4096}{7} \) |
\( \bigl[0\) , \( \phi\) , \( 1\) , \( 1\) , \( 0\bigr] \) |
${y}^2+{y}={x}^{3}+\phi{x}^{2}+{x}$ |
1225.1-a2 |
1225.1-a |
$2$ |
$5$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
1225.1 |
\( 5^{2} \cdot 7^{2} \) |
\( 5^{6} \cdot 7^{2} \) |
$1.18211$ |
$(-2a+1), (7)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$5$ |
5B.1.4[2] |
$1$ |
\( 2 \) |
$0.132925999$ |
$6.888108064$ |
1.637890543 |
\( \frac{4096}{7} \) |
\( \bigl[0\) , \( -1\) , \( 1\) , \( 2\) , \( -2\bigr] \) |
${y}^2+{y}={x}^{3}-{x}^{2}+2{x}-2$ |
2401.1-d2 |
2401.1-d |
$2$ |
$5$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2401.1 |
\( 7^{4} \) |
\( 7^{14} \) |
$1.39869$ |
$(7)$ |
$0$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$5$ |
5B.4.1[2] |
$1$ |
\( 2 \) |
$1$ |
$2.200325409$ |
1.968030875 |
\( \frac{4096}{7} \) |
\( \bigl[0\) , \( -\phi\) , \( 1\) , \( -16 \phi + 33\) , \( 58 \phi - 106\bigr] \) |
${y}^2+{y}={x}^{3}-\phi{x}^{2}+\left(-16\phi+33\right){x}+58\phi-106$ |
3969.1-g2 |
3969.1-g |
$2$ |
$5$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
3969.1 |
\( 3^{4} \cdot 7^{2} \) |
\( 3^{12} \cdot 7^{2} \) |
$1.58597$ |
$(3), (7)$ |
$0$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$5$ |
5B.4.1[2] |
$1$ |
\( 1 \) |
$1$ |
$5.134092622$ |
2.296036021 |
\( \frac{4096}{7} \) |
\( \bigl[0\) , \( 0\) , \( 1\) , \( -3 \phi + 6\) , \( 5 \phi - 9\bigr] \) |
${y}^2+{y}={x}^{3}+\left(-3\phi+6\right){x}+5\phi-9$ |
Download to
Pari/GP
SageMath
Magma
Oscar
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.