Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
605.1-c4 |
605.1-c |
$6$ |
$8$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
605.1 |
\( 5 \cdot 11^{2} \) |
\( 5^{2} \cdot 11^{8} \) |
$0.99097$ |
$(-2a+1), (-3a+2), (-3a+1)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2Cs |
$1$ |
\( 2^{3} \) |
$0.596122623$ |
$4.232646692$ |
1.128398811 |
\( \frac{2749884201}{73205} \) |
\( \bigl[1\) , \( -1\) , \( 0\) , \( -29\) , \( -52\bigr] \) |
${y}^2+{x}{y}={x}^{3}-{x}^{2}-29{x}-52$ |
3025.1-b4 |
3025.1-b |
$6$ |
$8$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
3025.1 |
\( 5^{2} \cdot 11^{2} \) |
\( 5^{8} \cdot 11^{8} \) |
$1.48185$ |
$(-2a+1), (-3a+2), (-3a+1)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{4} \) |
$1$ |
$5.299986074$ |
2.370225828 |
\( \frac{2749884201}{73205} \) |
\( \bigl[\phi + 1\) , \( 1\) , \( 0\) , \( -145 \phi - 145\) , \( 1040 \phi + 780\bigr] \) |
${y}^2+\left(\phi+1\right){x}{y}={x}^{3}+{x}^{2}+\left(-145\phi-145\right){x}+1040\phi+780$ |
Download to
Pari/GP
SageMath
Magma
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.