Learn more

Refine search


Results (4 matches)

  Download displayed columns to          
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
225.1-a2 225.1-a \(\Q(\sqrt{5}) \) \( 3^{2} \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $1.950256996$ 0.872181443 \( \frac{20480}{243} \) \( \bigl[0\) , \( \phi\) , \( 1\) , \( -8 \phi + 17\) , \( 76 \phi - 131\bigr] \) ${y}^2+{y}={x}^{3}+\phi{x}^{2}+\left(-8\phi+17\right){x}+76\phi-131$
225.1-c2 225.1-c \(\Q(\sqrt{5}) \) \( 3^{2} \cdot 5^{2} \) 0 $\Z/5\Z$ $\mathrm{SU}(2)$ $1$ $9.835591419$ 0.879722040 \( \frac{20480}{243} \) \( \bigl[0\) , \( 1\) , \( 1\) , \( 2\) , \( 4\bigr] \) ${y}^2+{y}={x}^{3}+{x}^{2}+2{x}+4$
2025.1-a2 2025.1-a \(\Q(\sqrt{5}) \) \( 3^{4} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.127940452$ $1.453635739$ 1.996134097 \( \frac{20480}{243} \) \( \bigl[0\) , \( 0\) , \( 1\) , \( 15\) , \( -99\bigr] \) ${y}^2+{y}={x}^{3}+15{x}-99$
2025.1-f2 2025.1-f \(\Q(\sqrt{5}) \) \( 3^{4} \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $1.466203400$ 1.311412189 \( \frac{20480}{243} \) \( \bigl[0\) , \( 0\) , \( 1\) , \( -75 \phi + 150\) , \( -1975 \phi + 3456\bigr] \) ${y}^2+{y}={x}^{3}+\left(-75\phi+150\right){x}-1975\phi+3456$
  Download displayed columns to          

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.