Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
360.1-e2 |
360.1-e |
$6$ |
$8$ |
\(\Q(\sqrt{10}) \) |
$2$ |
$[2, 0]$ |
360.1 |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( 2^{8} \cdot 3^{16} \cdot 5^{2} \) |
$2.46175$ |
$(2,a), (3,a+1), (3,a+2), (5,a)$ |
$2$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$0.458863687$ |
$3.223231443$ |
3.741667300 |
\( \frac{54607676}{32805} \) |
\( \bigl[a\) , \( 1\) , \( a\) , \( 19\) , \( 29\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+19{x}+29$ |
360.1-p2 |
360.1-p |
$6$ |
$8$ |
\(\Q(\sqrt{10}) \) |
$2$ |
$[2, 0]$ |
360.1 |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( 2^{20} \cdot 3^{16} \cdot 5^{2} \) |
$2.46175$ |
$(2,a), (3,a+1), (3,a+2), (5,a)$ |
$0$ |
$\Z/8\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{9} \) |
$1$ |
$3.223231443$ |
4.077101115 |
\( \frac{54607676}{32805} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( 80\) , \( 80\bigr] \) |
${y}^2={x}^{3}+{x}^{2}+80{x}+80$ |
Download to
Pari/GP
SageMath
Magma
Oscar
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.